Growth of a Tectonic Ridge

by
Robert W. Fleming
Arvid M. Johnson
and
James A. Messerich

U.S. Geological Survey

Open File Report 97-153 Denver, Colorado 80225

Growth of a Tectonic Ridge

Robert W. Fleming
Geologic Hazards Team
U.S. Geological Survey, Mail Stop 966

Denver, Colorado 80225
Tel.: (303) 273-8603 • FAX: (303) 273-8600
Arvid M. Johnson
Department of Earth and Atmospheric Sciences
Purdue University
West Lafayette, Indiana 47907-1397
Tel.: (317) 494-0250 • FAX: (317) 496-1210)
James A. Messerich
Geologic Photogrammetry Laboratory
U.S. Geological Survey, MS 913

Denver, CO 80225
Tel.: (303) 236-0914 • FAX: (303) 236-5690

Table of Contents

Abstract 1
lntroduction 2
Acknowledgments 4
Emerson Fault Zone 5
Tortoise Hill Ridge and the Emerson Fault Zone 8
Horizontal Deformations 17
GPS Measurements 17
Repeated Land Surveys 19
Photogrammetric Measurements 20
Differential Displacements 22
Horizontal Displacements 22
Vertical Displacements 24
Summary and Discussion 27
Magnitudes of Displacements 27
Magnitudes of Strains 27
Subsurface Forms of Belts of Shear Zones 28
Observations Relevant to Mechanisms of Tectonic Ridge Formation 28
Steps, Jogs or Bends 29
Dilatancy 29
Wedging 30
Final Comments 32
References Cited 33
Appendix 1 Determination of Displacements at Single-Tower Powerline 36
Appendix ll Survey and Resurvey of Control Points 39
Horizontal Control Data 39
Vertical Control Data 39
Appendix lll Photogrammetric Measurements 41
Method 41
Measurements 41
List of Figures
Figure 1. En echelon fault zones that activated during the 1992 Landers, California, earthquake 3
Figure 2. Rupture that passed between legs of transmission tower along Emerson fault zone 6
Figure 3. Aerial photograph of belt of shear zones along Emerson fault zone 7
Figure 4. Profile of Tortoise Hill ridge 9
Figure 5. Steep eastern face of Tortoise Hill ridge 9
Figure 6. Nearly vertical fault surface of main rupture about 1 m high 10
Figure 7. Northwest end of Tortoise Hill ridge 11
Figure 8. Southwest side of Tortoise Hill ridge 12
Figure 9. Scarps of thrust faults on southwest side of Tortoise Hill about one year after the earthquake 13
Figure 10. Fractures and thrusts at left jog in Emerson fault zone at brow of Tortoise Hill 15
Figure 11. Surveyed triangles east and west of the ruptured faults 18
Figure 12. Fractures bounding margins of Tortoise Hill ridge and differential displacements measured photogrammetically 23
Figure 13. Contours of vertical displacement, relative to a point (large shaded circle) near Bessemer Mine Road 25
Figure 14. Idealizations of ruptures along Emerson fault zone suggesting mechanisms for growth of Tortoise Hill ridge and tilting of ground southwest of fault zone 31
Figure I-1 Sketch of transmission tower and narrow shear zoneFigure I-2. Sighting along offset towers37
List of Tables
Table 1. Horizontal Displacements of Corners of Quadrilaterals 24
Table I. 1 Measurements and Corrected Lengths for Damaged Tower 36
Table I.2. Measurements and Corrected Lengths for Undisturbed Tower to northeast 37
Table I. 3 Estimates of Shift across Emerson fault zone 38
Table II.1. Closure Errors of Level Lines 39
Table III-0. Program to check length measurements in a quadrilateral, and to compute magnitudes of errors 43
Table III-1. Program to check length measurements in a quadrilateral, and to compute magnitudes of errors 53
Table III. 2 Program to check length measurements in a quadrilateral, and to compute magnitudes of errors 63
Table III.3. Program to check length measurements in a quadrilateral, and to compute magnitudes of errors 73
Table III.4. Data used to determine displacements of corners of ladder of braced quadrilaterals 83

List of Plates (in pocket)

Plate 1-Fracture zones and contours of change of altitude of ground in area of Emerson fault zone.
Plate 2-Fractures within the Emerson fault zone between Single-Tower Transmission Line Road and Tortoise Hill.
Plate 3-Fractures and belt of shear zones along Emerson fault at Single-Tower Transmission Line Road.
Plate 4-Vertical and horizontal changes in position of points along Tortoise Hill ridge.

Abstract

Tortoise Hill ridge incrementally grew in height during the 1992-Landers, California, earthquake. The ridge is in strike-slip terrain, within the right-lateral, Emerson fault zone. Tortoise Hill was elevated along bounding shear zones on the northeast and southwest up to 1 m as about 3 m of right-lateral shift was accommodated across the fault zone. Fortuitously, we located a group of survey points in the Tortoise Hill area that had been placed by a public utility company. Data for the measured deformation comes from a resurvey of those points and from analytical photogrammetric measurements on pre- and post-earthquake aerial photography.

Global Position System (GPS) and triangulation studies for length of base-line changes on the scale of kilometers by others indicate that the regional deformation east and west of the Landers rupture is left-lateral shearing on the order of 10^{-5}. This deformation reflects the elastic rebound. Our studies of a small area within the region indicate that deformations in the form of normalized length changes are smaller than our limit of accuracy (about 3×10^{-4}) to within about 100 m of the belt of shear zones. Within the shear zones and ridge, we measure right-lateral deformations up to 10^{-2}. At the center of the ridge, the deformation is smaller than 3×10^{-4}. There is also dilation normal to the long axis of the ridge suggesting that the rock within the ridge may have increased in volume. A displacement vector for a point in the center of the ridge indicates that ground in the ridge was thrusted toward the southwest as well as displaced laterally, parallel to the Emerson fault zone. The displacement vector is about 0.8 m oriented at about 45° to the bounding belts of shear zones relative to a point several kilometers to the south of the ridge.

Leveling measurements of differential vertical displacement indicate that ground more than 3 to 4 km southwest away from the ridge was not uplifted. Where uplift began, it gradually increased from about $5 \mathrm{~cm} / \mathrm{km}$ to perhaps $10 \mathrm{~cm} / \mathrm{km}$ at the southwest side of the ridge. Total uplift to the southwest side of the ridge was
about 0.2 m . From there, the uplift became localized and quickly reached a peak value of about 1 m within the ridge. The pattern is gentle tilting of a broad area to the southwest and an abrupt uplift of the ridge within the bounds of the surrounding belts of shear zones. The greatest growth of the ridge is at the crest of an elliptically-shaped area centered on the high ground of the ridge. Toward the northwest from the ridge, uplift ended within about 1 km of the ridge; the area on the northeast side of the Emerson fault zone in this area was downdropped at least 0.3 m as part of the releasing stepover to the Camp Rock fault zone.
Measurements of horizontal strain and displacement within and outside the ridge combined with elevation changes and detailed maps of surface rupture constrain potential models of the deformation.

The northeast side of Emerson fault zone is a fault that accommodated most of the 3.1 m of right-lateral shift across the fault zone. On part of the southwest side of the fault zone there is also a bounding fault, but in most places the fault zone consists of fractures distributed across a zone that is tens of meters wide. The fault on the northeast side is broken into four elements separated by shorter stepovers. The two northern elements are each 400 m long and trend $\mathrm{N} 55^{\circ} \mathrm{W}$. Stepovers are duplex structures; the trend of the stepovers is $\mathrm{N} 35^{\circ} \mathrm{W}$. Adjacent to Tortoise Hill, the traces of elements trend about $\mathrm{N} 65^{\circ} \mathrm{W}$; whereas traces of fractures with stepovers trend about $\mathrm{N} 45^{\circ} \mathrm{W}$. The areas in the stepovers of both fault elements adjacent to Tortoise Hill contain complicated patterns of surface rupture. In particular, the zone between the element that trends $\mathrm{N} 55^{\circ} \mathrm{W}$ and $\mathrm{N} 65^{\circ} \mathrm{W}$ has a structure indicating compressive deformation on both sides of the rupture zone. One is a blister-like structure composed of a swarm of tension cracks on the southwest side. The orientation of the tension cracks is consistent with maximum compression directed about normal to the stepover. On the northeast side of the rupture zone, several thrust faults and buckle folds also signal compression at the same place.

In the same area, left-lateral faults directed about normal to the main rupture zone trend northeast across the valley of Galway Lake. These fractures appear to be the local response to misalignment of the fault elements bounding the Emerson fault zone. This structural response to misalignment is small compared to the scale of deformation in the ridge.

The deformation in the belt of shear zones on the northeast side of the ridge indicates that the ridge grew relative to materials outside the zone along a near-vertical rupture. On the southwest side of the ridge, the rupture zone was mixed moderight lateral and thrusting-on a fault dipping to the northeast. The models that seem to apply to these geometric constraints include wedging or localized dilation of material within the fault zone.

Introduction

The 28 June 1992 Landers, California, earthquake of M 7.6 created an impressive record of surface rupture and ground deformation. Fractures extend over a length of more than 80 km including zones of right-lateral shift, steps in the fault zones, fault intersections and vertical changes. Among the vertical changes was the growth of a tectonic ridge described here.

The ground rupture and vertical deformation occurred in the desert, extending 80 to 90 km along an arc, north-south at the south end of the rupture and northwest-southeast at the north end of the rupture, from about 10 km north of Yucca Valley, California. Fracture details were preserved and patterns were largely unaffected by houses and roads. Deformation was dominated by rightlateral shearing that extended over elements of no fewer than four distinct faults arranged broadly en echelon (fig. 1).

In the process of documenting the surface rupture in different tectonic settings, we began to suspect that, in places, deformation was complimentary to existing topography. Areas of positive relief in the rupture zones appeared to have been uplifted during this earthquake. And, areas that might be tectonically positioned to be downdropped were covered with very young alluvium. In our minds, the landscape began to take on the form of the tectonic deformation that seemed to have occurred during the earthquake. One of these areas, Tortoise Hill, appeared to have been
uplifted significantly during the earthquake. We mapped a part of the area and decided that the amount of vertical growth was in the range of 0.5 to 2 m . But through mapping alone we could get only hints of how much growth had actually occurred.

During the same period, a concerted effort was being made to locate low-altitude, pre-earthquake aerial photographs of the rupture zone. We had previously used pre- and post-event aerial photographs to document deformation on landslide surfaces (Fleming and others, 1991), and wanted to test whether deformation caused by an earthquake could be measured photogrammetrically. We were largely unsuccessful in finding large-scale photos from the usual governmental sources (USGS, BLM, USDA, city, county, etc.) that covered any part of the rupture trace. The two groups of high-voltage transmission lines that crossed the rupture zone beginning about 1.3 km north of Tortoise Hill led us to the principal public utility of the greater Los Angeles area, the Southern California Edison Company (SoCalEd). While the pre-earthquake aerial photographs of the power-transmission lines were not well-enough controlled for analytical measurements, we did learn that Tortoise Hill had been part of a site that had been photographed and surveyed for a potential generating station. A relatively dense array of bench marks extends over about 10 land sections, from one side of the Emerson fault zone to the other,

Figure 1. Location map, showing en echelon fault zones that activated during the 1992 Landers, Califormia, earthquake. Epicenter of main shock (M7.6) was near Landers at the south end of the ruptures. Inset figure shows some of the major faults in southern California. Parts of the Camp Rock, Emerson, Homestead Valley and Johnson Valley fault zones shown as (heavier lines) ruptured in a right-lateral sense, generally with up to 4 meters of shift.
that had been surveyed by the utility company in the 1970's. The network of survey monuments crosses Tortoise Hill near the northwest end of the Emerson fault zone, where faulting steps across the valley of Galway Lake to the Camp Rock fault zone (Plate 1) ${ }^{1}$. The area is between Bessemer Mine Road in the south and the Rodman Mountains in the north. The SingleTower Transmission Line is in the northwest and the Emerson fault zone cuts obliquely from northwest to southeast in the northern part of the area (Plate 1 and Plate 2).

As part of the surveying project, SoCalEd had flown sets of aerial photographs of the site at 1:6000 and 1:12000 in the 1970's that could be compared to aerial photographs flown by I.K. Curtis Aerial Services, Inc. at 1:6000 along the traces of the ground ruptures immediately after the earthquake. Thus we were provided with an opportunity to use a new method of determining details of displacements and strains in the vicinity of earthquake ruptures. The detailed survey information on the benchmarks from the 1970's provided an additional data set that could be
evaluated with a resurvey of the same benchmarks, thereby providing access to two somewhat different methods of obtaining near-field deformational data. A level line that had been established for all the control and wing points provided the basis for learning elevation changes in the area of the ridge and extending for about 5 km south. The SoCalEd gave access to the preearthquake data and the aerial photographs, and we contracted with them for a resurvey of the bench marks. The basic survey information from both surveys are in the appendices to this report. We did not contract for bringing control to the site from a distant bench mark, so we cannot determine rotations of the entire surveyed field.

In this paper we describe the Emerson fault zone and the Tortoise Hill ridge including the relations between the fault zone and the ridge. We present data on the horizontal deformation at several scales associated with activity within the ridge and belt of shear zones and show the differential vertical uplifts. And, we conclude with a discussion of potential models for the observed deformation.

Acknowledgments

This research has been supported through grants from the Nuclear Regulatory Commission (Fleming), Department of Energy DE FG02 93ER14365 (Johnson), the Southern California Earthquake Center NTP2898 (Johnson), and the National Science Foundation Grant EAR 9416760 (Johnson and Cruikshank) for research and Grant EAR-9304047 (Johnson) for equipment. Nils Johnson drafted the maps and Jim Gardner edited the manuscript. The Southern California

Edison Company made all their pre-earthquake survey data available and conducted the resurvey of the site. Kenneth Cruikshank (Portland State University) and William Smith (USGS) surveyed control points for analysis of the post-earthquake aerial photographs. Kenneth Cruikshank helped with the fracture mapping in Tortoise Hill. We are grateful to all these individuals and organizations for the support. We, of course, are responsible for remaining errors.

[^0]
Emerson Fault Zone

The Emerson fault zone was mapped by Dibblee (1964) and Jennings $(1973,1994)$ as extending some 55 km in the southeasterly direction from the vicinity of the Single-Tower Transmission Line (Section 15, T6N, R3E), along the west side of Emerson Lake, to at least as far south as the latitude of Landers (to Section 18, T2N, R7E). About half of the known extent of the fault zone activated in 1992; it extended about 25 km from its northwest end to the vicinity of Galway Lake. Near its northwest end it stepped through a series of tension cracks northeastward to the Camp Rock fault zone; and, at its southeast end, it stepped southward across a mountain to the Homestead Valley fault zone (Zachariasen and Sieh, 1995). According to the California fault map by Jennings (1973, 1994), the Emerson fault zone was recognized to be a right-lateral, strike-slip fault; it was known as a Quaternary fault without historic activity implying active slip between the past 200 and the past 2 million years.

Traces of fractures were mapped within part of the Emerson fault zone between Tortoise Hill in the southeast and the Single-Tower Transmission Line in the northwest (Plates 1 and 2). Where the fractures are shown in detail, along with measurements of differential displacements, they were mapped using plane-table methods at scales of 1:200 to 1:500. Where the fractures are shown only as traces, they were mapped from aerial photographs at a scale of 1:6000. Comparison of fracture traces mapped by the two different methods indicates that the traces mapped photogrammetrically are generally incomplete and a subset of those mapped with plane-table methods.

The Emerson fault zone accommodated about 2.9 m of right-lateral shift at the Single-Tower Transmission Line and 3.1 m at Tortoise Hill ridge. Shift on the Emerson fault zone caused near collapse of a high-voltage transmission tower because its legs straddled the largest break (fig. 2) in the belt of shear zones. Using the distances between the legs of the deformed tower,
and the corresponding distances between the legs of neighboring undeformed towers, we calculated that the part of the rupture zone that passed through the legs of the tower accommodated 2.7 m of right-lateral differential displacement (Appendix I). By sighting along the other towers of the powerline we determined that an additional 21 cm of right-lateral relative displacement occurred within the fault zone to the southwest of the deformed tower. An additional 69 cm of relative displacement outside the shear zone to the northeast of the deformed tower accounts for the entire right-lateral component of differential displacement, 3.6 m , accommodated over a length of several transmission towers in the direction of the power line.

The additional 69 cm appears to be a result of tension cracking, not fault slip. To the northeast of the belt of shear zones at the damaged transmission tower, there are numerous open tension cracks trending about $\mathrm{N} 10-15^{\circ} \mathrm{E}$ across the valley of Galway Lake toward the Camp Rock fault zone (Plates 2 and 3). The tension cracks outside the belt are correctly oriented to transfer rightlateral displacement across the valley of Galway Lake between the Emerson and Camp Rock fault zones. The 69 cm of displacement seen in the offset between transmission towers to the northeast is the displacement in the direction of the power line produced by opening of the tension cracks. Correcting for the orientation of the measurement with respect to the opening direction of the tension cracks, perhaps about 1 m of right-lateral shift was transferred across the valley to the Camp Rock fault zone in the form of open fractures. We expect that the displacement on the Emerson fault zone continuing to the northwest diminishes by that amount, but we have no measurements of displacement in that area. (The method of displacement measurement on the transmission towers and results are in Appendix 1.)

In general, the trace of the rupture zone of the Emerson fault is simple and relatively straight

Figure 2. Rupture that passed between legs of tower. Views looking northwest along northeast edge of belt of shear zones at single-tower powerline.

A. Damaged transmission tower (Photo by A.G. Barrows).

B. Same view direction with parts of dismantled tower visible in middle of view to left. In foreground is trough about 2 m wide in sandy soil that represents the main break. Two fault elements, represented by narrow troughs and oriented about 15° clockwise from main rupture are also visible in foreground. The main rupture, visible in this view, offset the legs of the tower about 2.7 m in a right-lateral sense.

Figure 3. Vertical aerial photograph (about 1:12000 scale) showing belt of shear zones along Emerson fault zone about 6 km northwest of Bessemer Mine Road. Road in upper part of area is along Single-Tower Transmission Line. At south end of photo is north end of Tortoise Hill ridge. Edges of belt shown with arrows. East (right) side of belt is defined by the main fault in this area. The belt is about 70 m wide at transmission line road and 400 m wide in part of ridge shown.
for about 2 km to the northwest and 1 km to the southeast of the Single-Tower Transmission Line. The fault zone is characterized by a belt of shear zones $60-70 \mathrm{~m}$ wide (fig. 3 and Plate 3). The overall trend of the belt is $\mathrm{N} 45^{\circ}$ to $50^{\circ} \mathrm{W}$. As is typical of belts of shear zones (Johnson and others, 1993, 1994), the belts contain fractures such as individual tension cracks, en-echelon tension cracks, and right-lateral fault elements.

Tension cracks, oriented about 30° to 45° (N15 ${ }^{\circ} \mathrm{W}$ to north-south) at clockwise angles from the strike of the fault zone are clearly different in terms of both pattern and orientation from those outside the belt. The cracks occur sparsely throughout the width of the broad belt on either side of the collapsed tower (Plate 3). The tension cracks are open fractures with highly irregular, interlocking traces that have accommodated only opening (mode I), but no shear. The high irregularity is characteristic of tension cracks that form where the normal compression parallel to the fracture is relatively low (e.g., Cruikshank and others, 1991a). The tension cracks that formed at about 45° to the walls of the broad belt of the Emerson fault zone (Plate 3) seem to reflect only simple shear, without dilation, across a shear zone at depth. Those oriented at 30° seem to reflect a combination of shear and dilation (Fleming and Johnson, 1989; Johnson and others, 1997).

The tension cracks are simple fractures because they were subjected to a single mode of deformation (Johnson and Fleming, 1993, Johnson and others, 1993). Some of the fractures, though, are complex because they first opened and then sheared (and perhaps opened further); these are typical of brittle fractures in shear zones (e.g., Johnson and Fleming, 1993; Johnson and others, 1993).

Several narrow shear zones accommodated a few centimeters to a few tens of centimeters of right-lateral shift within the Emerson fault zone northwest of the Single-Tower

Transmission Line (Plate 3). A narrow shear zone along the southwest wall accommodated 21 cm of right-lateral and 0 to 10 cm of vertical (downthrown on northeast side) relative displacement. For much of its length it consists of N-S oriented tension fractures, several meters long. The blocks of ground between the fractures typically end in low thrusts, directed toward the center of the broad shear zone (Plate 3).

The shear zone (or "mole track") along the northeast wall (fig. 2B and Plate 3) accommodated much more shift and is broader. It dominates the belt of shear zones. This shear zone or complex of shear zones ranges from perhaps 0.5 m wide at places in the northwest section of its trace to 10 m wide in the southeast section, and it has a beaded, or pinch-and-swell structure, which is particularly noticeable in the northwest section. The very narrow elements-the pinches-are a few tens of centimeters wide; they contain a narrow trough in the ground surface, about 10 cm deep and wide (fig. 2B) along parts of their spans. The
broader elements-the swells-are several meters wide. Both the swells and the troughs contain long fractures, oriented at a clockwise angle of about 30° to the trend of the shear zone (fig. 2B).

These fractures in the belt of shear zones in the vicinity of the power-line crossing are representative of those seen in the fault zones throughout the Landers earthquake area (Johnson and others, 1993). They represent in a general way the expected style and array of fracturing in a simple shear zone in the absence of a complicating structure. The tension fractures that step to the Camp Rock fault zone to the northeast of the deformed transmission tower are a simple additional element that adds a minor, but interesting complexity to the fracturing in the shear zone. Departures in fracture kinematics from this nearly "normal" pattern are used to interpret the mechanics of a more complex structure. We describe the more complex fractures associated with Tortoise Hill as part of the description of the ridge.

Tortoise Hill Ridge and the Emerson Fault Zone

Tortoise Hill ridge is about 1 km southeast of the power-line crossing (Plate 1). Fractures surround the northwest end of the ridge, apparently as a result of splitting of the belt of shear zones into two, separate shear zones. The pattern of the split belt is like the prow of a Tortoise-Hill-ridge boat, or perhaps a canoe, steaming northwesterly. The bounding zone on the northeast side of the ridge continues to the southeast beyond the map area. The fault zone on the southwest side of the ridge extends only to the southeast end of the ridge and stops. Maximum uplift of the ridge is at about the point where the southwest-bounding fractures end (Plate 1).

The ridge protrudes above the general land surface in an upside-down, keel-shaped outcrop about 400 m wide and 1200 m long. It is about 40 m higher than the valley of Galway Lake on the northeast side and about 20 m higher than the projection of the tilted surface (fig. 4) on the southwest side. This southwest side of the ridge
is a long, gently sloping surface much like a pediment except that evidence for beveling by erosion is absent. A distinct change in slope is visible about 1 km southwest of the ridge, but the topographic base map on the geologic map of Dibblee (1964) and on Plate 1 indicates that the change of slope is more one of direction than magnitude of slope.

The northeast side of the ridge is very steep and apparently a fault scarp (fig. 5). In the narrow shear zone along part of this scarp, 1 to 1.5 m of differential vertical uplift was evident with the ridge side upthrown. Measurements of offset features indicate that right-lateral shifts of up to 2.65 m were accommodated across the narrow belt of ruptures. Figure 6 shows a fault surface with striations plunging from right to left within the main rupture zone along the northeast side of Tortoise Hill. The fault surface here strikes N $65^{\circ} \mathrm{W}$ and dips 86° south. The slickensides have a rake of 12°, and plunge $\mathrm{S} 64^{\circ} \mathrm{E}$. The adjacent

Figure 4. View southeast showing a profile of Tortoise Hill ridge. Valley of Galway Lake is on left and in foreground, and the pediment-like surface underlain by monzogranite on the right. Northeast face of ridge is a fault scarp. Southwest flank is gentle and projects slightly above the slope of pediment-like surface.

Figure 5. View southeast along Emerson fault zone. The steep, northeast face of Tortoise Hill has a compound slope; lower part is a fault scarp. Spheroidal weathering gives hill the appearance of a rock pile.

Figure 6. View southwest on northeast side of Tortoise Hill ridge of nearly vertical fault surface of main rupture about 1 mhigh. About 200 m south of Quad 3 (Plate 4) along northeast side of ridge. Light gray material in face beneath dark top soil is monzogranite. Striations plunge 17° to the left (SE).
materials are alluvial fill in the valley of Galway Lake. As we shall see from the survey data reported in subsequent sections, the valley of Galway Lake was downdropped by more than 0.3 m during the earthquake. In addition to the ridge being uplifted relative to the valley, the valley apparently has served repeatedly as a releasing stepover between the Emerson and Camp Rock fault zones.

The exposed rock at Tortoise Hill and over several square kilometers of ground to the southwest is Mesozoic monzogranite (D.M. Morton, written communication, 1996) containing local aplite dikes. Some of the aplite dikes were visible on the aerial photographs and were added to the information on Plates 2 and 4. We were interested in the extent of shearing in the ridge because one of the mechanisms of ridge growth might be dilatancy. The map of dikes is incomplete, but it does show that there are large blocks of intact rock throughout most of the ridge. We simply note here that the long intact dikes in the ridge therefore argue against large amounts of shearing of rock within the ridge, so the suggestion of ridge growth through dilatancy is weak.

In Tortoise Hill, the monzogranite has weathered into spheroidal boulders, and the ridge has the overall appearance of a large rock pile (fig. 5). Outcrops of the monzogranite also occur here and there over the pediment-like slope to the southwest (pediment-like surface is on right of ridge in fig. 4). The fault-parallel Galway Lake valley immediately northeast of Tortoise Hill is underlain by young alluvium, but small knobs and hills of older igneous and metamorphic rocks project through the alluvium on the northeast side of the valley (Dibblee, 1964).

Rather than Tortoise Hill ridge being one large, homogeneous structure bounded by shear zones, the ridge appears to consist of several pieces of ground that have moved differentially vertically with respect to one another. The pieces of ground are spine-shaped bodies that are not highly fractured internally but may be bounded by fractures. For example, one spine, about 120 m long, 50 m wide and 10 to 12 m high, occurs along the main rupture zone as shown at the northeast edge of Plate 4 and as the rocky mass on the left in figure 7 . A smaller spine, about 40 m long, 20 m wide and 6 m high, occurs at a place corre-

Figure 7. View toward southwest of northwest end of Tortoise Hill ridge.
A. More distant view of ridge. On the left is bouldery nose of hill 1080 (Plate 2). In middle distance on right is ragged fracture of the main rupture, which climbs up the bouldery nose, about 3 m on near side of two larger blocks on skyline. In middle distance in center and left is a low thrust fault, with a scarp 20 to 30 cm high, with downthrown side near observer.
B. Closer view of ruptures. On left are two en-echelon thrusts about 30 cm high. They merge to right with main right-lateral rupture which, here, accommodated about 2.3 m of right-lateral and 0.5 m of vertical differential shift. Center of view shows the small pop-up structure shown in Plate 2, where the misalignment between fault elements produce a restraining structure in the stepover.
sponding to the quadrangle corner that moved upwards 0.4 m as indicated in Plate 4 . There may be several other spines with similar ranges of scales visible in the contour map of Plate 4, but all are near the shear zone on the northeast side of the ridge. Our deformation measurements were too widely spaced to resolve any differential displacement of the spines.

There is a broad band of hummocky ground parallel to the unsheared monzogranite near midlength on the southwest side of the ridge (fig. 8). The ground surface is a group of low, rounded bumps that are perhaps 10 m across and 2 to 5 m high. Material in the small bumps is highly sheared monzogranite. In some places the monzogranite is recognizable, but in others the rock is completely pulverized. Mafic minerals,
biotite and amphibole, are drawn out in streaks or altered. Bands containing altered mafic minerals about 1 cm thick alternate with pink or gray bands of clay-size material. Shearing is evident on most surfaces and directions of striae are different on different surfaces. We found places where the ground was split locally in this zone and small amounts of the white to pink material were extruded onto the ground surface. The surface rupture on the southwest side is mixed mode right-lateral and thrust faulting (Plate 2 and Plate 4). At the northeast end of the rupture, right-lateral shift predominates; at the southwest end, thrusting predominates (fig. 9).

The fault on the northeast side of the belt of shear zones in the Emerson fault zone throughout the mapped area carries most of the differen-

Figure 8. View toward northeast of southwest side of ridge. Light-colored low hummocks at base of Tortoise Hill are composed of highly sheared monzogranite.

Figure 9. Thrust faults on southwest side of Tortoise Hill about 1 year after the earthquake.
A. View toward northeast at Tortoise Hill showing brows representing two thrust faults along southwest side of the ridge about 200 m southeast of side of Quad 2. Each brow is about 20 cm high, with ground in background thrown upward relative to ground in foreground. Some of tension cracks visible beyond brows on left side of view. Hummocky ground between brows and monzogranite is underlain by highly sheared material.
B. View northwest along southwest side of Tortoise Hill, which is on right. In left side is a step, which marks one of the blind thrust faults on the southwest side of the ridge. Ground on right uplifted one to two decimeters relative to ground on left. A tension crack, marked by series of depressions, extends from near lower left corner toward upper right corner. Orientation reflects right-lateral shearing.
tial displacement across the belt. At the power line, 2.7 of 2.9 m of displacement is on the northeast side. At Tortoise Hill, about 2.65 of 3.1 m is concentrated in a narrow belt on the northeast side. Eight kilometers to the southeast, the concentrated displacement shifts to the southwest side of the shear zone.

There is structure contained in the shear zone but it is difficult to recognize on the plates. In general, however, the rupture belt contains one sharp boundary to the fracturing and the other side is diffuse. The trend and steps in the sharp boundary of the rupture belt is useful to recognize structures.

There are virtually no fractures related to rightlateral strike-slip faulting farther to the northeast so we can use this sharp boundary as a reference line to describe the fracturing along the trend of the surface rupture. Beginning on the northwest end of Plate 2, the general trend of the rupture zone is $\mathrm{N} 48^{\circ} \mathrm{W}$. The ruptures on the boundary on the northeast side of the zone, however, are not in a straight line but rather form a consistent stepping pattern of four connected elements. The northwesternmost element is at least 400 m long and oriented about $\mathrm{N} 55^{\circ} \mathrm{W}$. Then, in a 100 m stretch that is oriented about $\mathrm{N} 35^{\circ} \mathrm{W}$, the sharp edge of the rupture belt is offset in a right step of about 40 m . There, another $400-\mathrm{m}$ element begins that is oriented $\mathrm{N} 55^{\circ} \mathrm{W}$. This element is offset in a right-step by another shorter, $80-\mathrm{m}$ element, also oriented $\mathrm{N} 35^{\circ} \mathrm{W}$. Within both steps are groups of fractures in the shear zone that diverge from the sharp boundary along the element and curve back toward it at the southeast end of each step. In other locations of surface rupture produced by the Landers earthquake, we have seen these same structures better developed. They are strike-slip duplex structures (Cruikshank and others, 1991a; Johnson and others, 1997). All the fracturing is right lateral in the duplex structure. The bounding shear zone contains right-lateral fault elements that are subparallel to the boundary. The curving fractures are also right-lateral fault elements. The net kinematic result of the duplex structure is a right offset of the bounding rightlateral fault zone.

The third, $350-\mathrm{m}$ element, is oriented about 10° more westerly ($\mathrm{N} 65^{\circ} \mathrm{W}$) than the two elements farther north. Several narrow zones of fault elements diverge from the bounding rupture zone of the preceding element and curve back toward it at the end of the stepover and indicate that a duplex structure is in the stepover.

The fractures in this stepover zone, however, are more complicated than in the more northerly duplex. There is a difference in orientation between the two elements that produces a restraining bend of about 10°, and there are additional types and orientations of fractures in the area of the bend that were not evident farther northwest. The structures in the bend can be better understood by mentally eliminating the fractures that appear to be part of a duplex structure in the stepover zone.

Abundant fractures occur on both sides of the northeast-bounding fault (Plate 4). On the northeast side are several long tension cracks oriented about north-south and a group of thrust-faultlike fractures oriented about east-west (fig. 10). The thrust-like fractures have mixed north to south and south to north transport directions and therefore accomplish only shortening (e.g., Fleming and Johnson, 1989) in a north-south direction across the zone. Farther along on the northeast side of the principal rupture zone are about five narrow zones of left-lateral shearing that trend about normal to the direction of the overall shear zone. The left-lateral sense of shear is indicated by the orientations of the en echelon fractures. Offset of up to 10 cm was measured at one of these narrow zones.

A zone of tension cracks is shown on the southwest side of the bounding rupture zone in area " A " of figure 10 and on the left edge of Plate 4. This zone had the appearance in the field of a blister-like structure that had been uplifted and fractured in this small area of perhaps 20 by 30 m . Tension fractures of this orientation were confined to the southwest side of the rupture zone, but arching of a contour line on the northeast side of the rupture zone is perhaps indicative of uplift extending across the bounding shear zone

Figure 10. Fractures at left jog in Emerson fault zone at brow of Tortoise Hill, showing compression features on both sides of the jog. The main rupture of the Emerson fault had a scarp about 65 cm high near center of area shown and right-lateral slip was about 265 cm here. The main rupture trends southeast over the east edge of the elongated dome of North Spine. To the north of the rupture are opposite-facing thrusts, dipping north or south, indicating north-south compression. The brows are up to 10 or 15 cm high. To the south there is a welt marked by numerous tension cracks oriented north-south and bounded on the south by a thrust dipping northward.
to the other side as well. The zone of tension cracks was bounded on its southern end by a thrust fault. The thrusting is produced when the prisms of rock broken by tension cracks are rotated in right-lateral shear (fig. 10). The blocks are free to rotate on their sides but constrained on their ends; rotation thus produces the thrusting along the boundary of the blister-like structure. The arching of the contour line across the structure indicates that the total local uplift at the blis-ter-like structure is between 1 and 5 m (Plate 4).

To the northwest of the blister-like structure are at least four narrow belts of left-lateral fractures that are subparallel to the right-lateral fractures in the duplex zone (Plate 2). The left-lateral fractures curve toward the small, blister-like structure composed mostly of tension cracks that is adjacent to the bounding rupture zone. This complicated structure is shown in more detail on the northwest (left) end of Plate 4 . These fractures and bulging that are indicative of compression on both sides of the rupture zone are apparently the response to the misalignment of the fault elements. The weak duplex structure accounts for the stepover between the elements; but the misalignment produces compression that is manifest differently on the two sides of the bounding rupture belt.

The stepover at the southeast end of the complex rupture element trends $\mathrm{N} 45^{\circ} \mathrm{W}$ and produces 30 40 m of right step. The next element, the southeasternmost element shown on Plate 2, is at least 500 m long and oriented parallel to the more complex element just northwest of it (N65 ${ }^{\circ}$ W). There is one left-lateral fault zone at the northwest end of the element that trends northeast across the valley of Galway Lake. There are also a few small fractures on the southwest side of the principal rupture belt at the stepover and a few apparently unorganized fractures in the block across from the left-lateral fault. This area was mapped photogrammetrically, and there is not enough fracture information to determine whether a duplex structure formed between the elements. Clearly, there was not a complex compressive structure like the one immediately to the northeast of this area that resulted from a misalignment of the elements.

In summary, the fault bounding the northeast side of the Emerson fault zone is composed of four right-stepping fault elements. The two elements that are farthest to the northwest are parallel and oriented $\mathrm{N} 55^{\circ} \mathrm{W}$. The stepover between the elements is oriented $\mathrm{N} 35-40^{\circ} \mathrm{W}$. This stepover contains connective fractures of a duplex structure. The two elements bounding the northeast side of Tortoise Hill are also about parallel to each other and oriented $\mathrm{N} 65^{\circ} \mathrm{W}$. The stepover between these southeastern most elements is oriented about $\mathrm{N} 45^{\circ} \mathrm{W}$. The area between these two elements lacks the fractures indicative of duplex structures seen farther northwest, but instead contains a left-lateral shear zone normal to the bounding shear zone and a few other fractures of uncertain origin. The middle stepover, between the second and third elements described above, contains both a duplex structure and complicated compressive structures. The compressive structures occur in the zone between the elements and apparently are a result of a 10° misalignment of the two fault elements. It is important to reiterate that the compressive structures occur on both sides of the bounding rupture belt and that the dimensions of the structures are about the same as the length of the stepover. The reasons for the differences in rupture style for what appears to be similar structural settings of stepping fault elements are unknown. It does appear that the complex fracturing and blister-like structure on the principal fault of the Emerson fault zone at Tortoise Hill is a localized response to the short, misoriented fault element. The change in orientaiton and the stepping of fault elements are not likely to have produced the uplift of Tortoise Hill ridge. The change in orientation is highly localized, so it could produce only a small structure; the size of the blister-like structure and the short thrusts are appropriate to the scale of the misoriented element. The steps should be releasing rather than compressing structures, so the ridge would therefore not be related to the stepping of fault elements.

The shear zone on the southwest side of Tortoise Hill ridge is south and directly across the ridge from the blister-like structure described above. This zone is also broken, and three crude but distinct elements can be identified. Elements are ori-
ented about $\mathrm{N} 45^{\circ} \mathrm{W}, 250-300 \mathrm{~m}$ long, and right stepping with $20-40 \mathrm{~m}$ of offset on each step. The fractures at the northwest end of the zone are predominantly right lateral with a small component of reverse movement on a surface dipping northeast. Farther southeast, the zone accommodates increasing reverse shift with the ridge side upthrown from a few centimeters to a few tens of centimeters (fig. 9).

This shear zone on the southwest side of the ridge has lifted the monzogranite in Tortoise Hill above the sloping, pediment-like surface farther to the southwest. Along this side of the ridge, the outcrops of white pulverized rock in zones essentially parallel to the surface-rupture fractures indicate that this side of the ridge has also been the site of repeated faulting.

Horizontal Deformations

Magnitudes of horizontal deformation are partly a function of where the measurement is taken and partly a function of length of measurement baseline. We have measurements of length- and angle-changes at length scales ranging over three orders of magnitude, from 10 km to 0.1 km . Close in to the rupture belt, we expect larger strains than several kilometers away. We have examined deformation at three levels of observation: Changes in length of long base lines (about 6 km or longer) using triangulation and Global Position System (GPS) surveys provide data for far-field strain analysis. Resurvey of a group of pre-earthquake bench marks ranging from about 7 km from the rupture zone to within the rupture zone and across it provides data for close-in deformation determination. Measurement lengths are typically in the range of 500 m to 1000 m . And, analytical aerial photogrammetry provides data on change in lengths of braced quadrilaterals where initial line lengths are in the range of 100 m and where measurement points are within and across the shear zones. These three levels of information show deformation as a function of position with respect to the surface rupture.

GPS Measurements

Calculations of changes of line lengths and angles using very long baseline trilateration net-
works across faults that have moved during earthquakes date back to the 1906 San Francisco earthquake (King and Savage, 1983; Prescott and Lisowski, 1983; Stein and Thatcher, 1981; Thatcher, 1975, 1979; and Thatcher and Fujita, 1984; Savage and Gu, 1985), and continue today with broad-scale Global Position System (GPS) surveys. Trilateration and GPS surveys at Landers (Hudnut and others, 1994; and Freymueller and others, 1994) provide considerable regional information about displacement fields on both sides of the rupture zone. Results of these surveys can be used to compute strains a few kilometers from the belts of surface rupture.

Trilateration data of Hudnut and others (1994) for monuments surveyed before and after the earthquake provide normalized length changes for triangles spanning relatively large areas on either side of the northern part of the Homestead Valley fault zone and the southern part of the Emerson fault zone. One triangle consists of stations CREO ${ }^{2}$, MAUM, and LEDG, east of the fault zones (fig. 11). The other consists of stations BOUL, MEANS and ROCK, west of the fault zones.

The triangles have legs ranging from about 6 to 20 km long, and at that scale the normalized length changes ${ }^{3}$ are:
$\mathrm{E}_{\mathrm{n}}=$ (final length-initial length)/initial length.(1)

[^1][^2]

Figure 11. Triangles east and west of the ruptured faults were surveyed by trilateration and show normalized length changes. The direction and magnitude of maximum extension is indicated with double-headed arrows. The measurements reflect left-lateral shearing on the order of 7×10^{-5} that accompanied elastic, right-lateral unloading of the faults. Right-lateral deformations are concentrated in the vicinity of belts of shear zones along the faults.

The deformations for a triangle west of the Landers rupture are consistent with unloading during the earthquake sequence. For the triangle east of the surface rupture, changes are -0.009×10^{-2} (compression) for MAUM/CREO, -0.004×10^{-4} (compression) for LEDG/CREO, and $+0.006 \times 10^{-2}$ (extension) for MAUM/LEDG. We note that the MAUM/LEDG leg trends roughly north-south, so the deformations are consistent with left-lateral shearing in the general direction $\mathrm{N} 45^{\circ} \mathrm{W}$, reflecting unloading of the right-lateral fault zones during the earthquake.

If we assume that the deformations are continuous, the direction of maximum extension would be $N 3^{\circ} \mathrm{W}$ and the principal extensions would be $\mathrm{E}_{1}=+0.007 \times 10^{-2}$ and $\mathrm{E}_{2}=-0.007 \times 10^{-2}$, that is, the deformation is pure shear (or simple shear).

For the triangle west of the fault zones, normalized length changes are -0.7×10^{-4} (compression) for ROCK/BOUL, -0.003×10^{-2} (compression) for ROCK/MEANS, and $+0.006 \times 10^{-2}$ (extension) for BOUL/MEANS. The BOUL/MEANS leg is roughly north-south, again consistent with leftlateral shearing in the general direction $\mathrm{N} 45^{\circ} \mathrm{W}$. If the deformations are continuous, the direction of maximum extension would be $\mathrm{N} 30^{\circ} \mathrm{E}$ and the principal extensions are $\mathrm{E}_{1}=+0.007 \times 10^{-2}$ and $\mathrm{E}_{2}=$ -0.009×10^{-2}, so there is both left-lateral shearing and slight area decrease.

Qualitatively, the long base-line changes support the suggestion of left-lateral shearing that is generally parallel to the direction of the rupture belt. Both sides of the rupture belt deformed in a manner consistent with unloading of the rightlateral fault zones.

Repeated Land Surveys

SoCalEd established bench marks, surveyed, and mapped an area of about 10 land sections during the mid-1970's as part of the control for photogrammetric surveying of a potential site for a power plant. The plant has not been built, but the survey benchmarks remain. The area included a set of section lines from Bessemer Mine Road in the southwest, across Tortoise Hill ridge
and the surface rupture of the Emerson fault zone, and into the alluvial valley of Galway Lake to the northeast. Forty-six bench marks were set as primary $x-y-z$ control and an additional 30 wing points were set for elevation control of aerial photography. Using a total station in 1995, SoCalEd repeated angle and length measurements that were made in 1973 and 1976 as part of our investigation of faulting and deformation in the area of the Landers rupture. Descriptions of the surveys are in Appendix II. The record of the earlier survey is on file in Book 31, page 90, of San Bernardino County. Plate 1 shows computed displacements, normalized length changes, and vertical changes.

Mr. Richard Moses, supervising surveyor for both the 1973/76 survey and the 1995 survey reported that the angles should be accurate to 5 seconds and the lengths should be accurate to within 10^{-5}. Thus, for a 1 km line, the length should be accurate to 1 cm . Through examination of normalized length changes, however, we infer that the actual errors are larger. The larger errors probably were introduced with the older surveying methods in 1973/76. We conclude that length changes of about 3×10^{-4} and larger should be significant but that inferred length changes of smaller magnitude are masked by error.

Some of the results of the repeated land surveys are in Plate 1. We have assumed that the bench mark near the corner of Sections 1 and 12 of R3E and Sections 6 and 7 of R4E did not move between the times of the two surveys. As with the GPS and trilateration measurements of length changes regionally (fig. 11), we do not report strain invariants or principal strains; rather we report normalized length changes. The reason we do not convert the length measurements into strain is that the deformation is almost certainly localized. The notion of strain is based on the assumption that, at the level of observation, the displacement distribution is homogeneous; strain is defined as a point quantity. Thus the strain tensor and strain invariants, including the principal strains, have no meaning where lines measured cross discontinuities. Also, we calculate the angular deformation, $\tan (\psi)$, from the relation,

$$
\begin{equation*}
\cot (\theta)=\tan (\psi)+\cot (\Theta) \tag{2}
\end{equation*}
$$

in which Θ is the initial and θ is the final angle between two line elements and ψ is the angle of shearing (e.g., Johnson and others, 1996). If the deformations were strains, $\tan (\psi)$ would be the shear strain.

Measurements south of Section 25, T6N R3E, (Plate 1) which includes part of Tortoise Hill ridge, reflect such small length changes (or errors) that we are unable to obtain meaningful estimates of deformations. For example, the measurements between benchmarks in the vicinity of Bessemer Mine Road indicate normalized length changes and shearing on the order of 10^{-5}, which we judge to be insignificant. Nearby, at the common corner of Sections 1, 2, 11 and 12, T5N R3E, the normalized changes are on the order of 10^{-5}, but the magnitudes of an angular deformation and a normalized length change are about 2×10^{-4}. These must be negligible. Note that, even at the southern corners of Section 25, T6N R3E, about 1 mi south of Tortoise Hill, the normalized length changes and angular deformations are smaller than can be measured accurately with the repeated surveys. Even at the southwest corner of Section 24, T6N R3E, about 500 m southwest the edge of Tortoise Hill, the normalized length changes are negligible. The normalized length changes between the control points to the north and south are both below the level of significance, even though the control point to the north is within 200 m of the known rupture zones. The control point to the east is on the eastern side of a known fault, so the normalized length change of -0.03×10^{-2}, which is at the margin of significance, probably is a result of faulting.

According to these results, the normalized length changes are smaller than 2×10^{-4} in an area extending 6.5 km south of Tortoise Hill and about 4.5 km southwest the Emerson fault zone (Plate 1). The results suggest that normalized length changes and angle changes are below that level everywhere except where there are control points that span ruptured ground. The small normalized length changes are consistent with the regional GPS and trilateration measurements reported in
figure 11, that the normalized length changes are on the order of 5×10^{-5}.

Photogrammetric Measurements

In order to determine supplementary length changes in relatively small areas near the rupture zone at Tortoise Hill, we have used a photogrammetric method and sequential aerial photography. The method was first used to make displacement measurements in specially designed landslide projects by Fraser and Gruendig (1985), who report sub-centimeter accuracy. We have since used sequential aerial photography to measure displacements in landslides (Baum and others, 1989; Fleming and others, 1991; Baum and Fleming, 1991), For landslides in Utah and Hawaii, the style of structural deformation to houses is confirmed with one-dimensional strain computed from closelyspaced measurements of displacement on photos (Baum and Fleming, 1991). At the active Slumgullion landslide in southern Colorado, photos taken in 1985 and 1990 are used to measure deformational changes by tracking the movement of photo-identifiable points as they are translated with the landslide (Smith and Savage, 1995). The $x-y-z$ positions of photoidentifiable points on the moving ground are measured with an analytical stereoplotter, and measurements of the same moving point at two different times are converted into a displacement vector. The control points required to scale the photography and establish a reference coordinate system for the measurements is off the moving ground of the landslide.

The technique has not previously been used to determine displacements along active faults or strains in their vicinity, but we have been able to use the method for parts of the Landers earthquake rupture. We have pre-earthquake aerial photographs, taken in 1976, at a scale of 1:6000, of part of the area that later was in the belt of fault rupture. The photographs were flown by SoCalEd and are controlled with the array of points surveyed at that time. The second set of photographs was taken within hours of the Landers earthquake by I.K. Curtis Aerial Services, Inc. On 28 June 1992, aerial pho-
tographs at a scale of 1:6000 were taken of almost all the areas of ground rupture at Landers, including the northern part of the area covered by the 1976 photographs. We surveyed eight control points that could be identified precisely on the 1992 photography in 1994, using a total station for both horizontal and vertical control. Thus, each set of photographs had its own set of control points that was established at about the time of the photography.

Further details of the method, including replication and sorting of data used in calculations, and all our data are presented in Appendix III.

We used the photogrammetric method to measure lengths of legs and braces of a ladder of four quadrilaterals extending across Tortoise Hill ridge from the southwest to the northeast sides. The quadrilaterals, in relation to the fractures that we mapped and the topography of the hill are shown in figure 12 and Plate 4. The position of the control point in Tortoise Hill that moved horizontally southward is shown near the righthand end of Plate 4 and with a displacement vector on Plate 1.

For each quadrilateral and each date of photography we determined a least-squares best fit plane and determined lengths within that plane. Then we determined normalized length changes by comparing lengths of legs and braces in 1973 and 1992. Our measurements discussed in Appendix III indicate that normalized length changes smaller in magnitude than about 3×10^{-4} are negligible.

Starting with the southwest edge of the quadrilateral (Quadrilateral Q2) in the southwest, the normalized length change is marginally significant, but shows a small extension in the northwest direction. The northeast-trending legs cross a rupture zone and both show compression about ten times larger, -1.4 to -2×10^{-3}. The compression certainly reflects the thrusting of Tortoise Hill relatively toward the southwest across the southwest rupture belt. The north-south diagonal brace was shortened and the east-west diagonal brace was lengthened, reflecting the right-lateral shear across the southwest rupture belt. Thus the
measurements reflect small to negligible extension parallel to the southwest belt, but significant right-lateral shearing parallel and shortening normal to the southwest belt that bounds Tortoise Hill ridge.

The next quadrilateral to the northeast (Quad Q0) near the center of Tortoise Hill (Plate 4) indicates very small to negligible deformation (that is, normalized length changes smaller in magnitude than 3×10^{-4}).

The northeast end of the next quadrilateral (Quadrilateral Q1) to the northeast is within the belt of shear zones on the northeast side of Tortoise Hill ridge. Normalized length changes are generally large, on the order of 10^{-3} and the deformation is clearly inhomogeneous within the quadrilateral. Thus the leg at the southwest edge of the quadrilateral shortened barely significantly, whereas the leg at the northeast edge shortened by -1.5×10^{-3}, apparently reflecting the fact that it traverses the right side of the belt of shear zones obliquely. Because the northwest end of the leg is deeper within the belt than the southwest end, the leg is shortened significantly. The shortening of the north-south brace and the lengthening of the east-west brace again reflect the right-lateral shearing in the belt of shear zones.

Another interesting result is that the southwest and northeast sides of the quadrilateral are both extended significantly. Because of the orientations of these sides relative to the orientation of the belt of shear zones, we would expect minor extension in the southwest side and minor compression in the southeast side if there were only simple shearing. We suggest that the significant extension in both sides reflects movement of the center of Tortoise Hill southward relative to the belt of shear zones on the northeast side of Tortoise Hill. We observed this sense of differential displacement for a control point, shown at the left-hand side of Plate 1, that moved 0.8 m toward the south.

The last quadrilateral (Quad Q3) extends from northeast of the belt of shear zones into the belt of shear zones. The northeast side of the quadri-
lateral stretched significantly, 1×10^{-3}; the reason is unclear. The northwest and southeast sides also stretched large amounts, 1 to 2×10^{-2}, apparently reflecting large right-lateral shearing. The minor northeastward thrusting visible in the belt of shear zones apparently was overwhelmed by the right-lateral shearing. The right-lateral shearing is also reflected in the shortening of the north-south brace and the lengthening in the east-west brace.

In summary, at the three levels of observation, ($\sim 10 \mathrm{~km}, 1 \mathrm{~km}, 0.1 \mathrm{~km}$ lengths), normalized length changes provide insight into the intensity and style of deformation. In the far-field, as measured by trilateration and GPS, principal exten-
sions are in the range of 7 to 9×10^{-5}. On both sides of the rupture belt in the far field, the deformation is left-lateral shear that is generally parallel to the belt of surface rupture. Re-survey of pre-earthquake bench marks near Tortoise Hill indicates that the deformation is generally below the limit of survey accuracy $\left(\sim 3 \times 10^{-4}\right)$ everywhere except where points cross a belt of surface rupture. The braced quadrilaterals spanning Tortoise Hill gave essentially the same result; normalized length changes were smaller than 3×10^{-4} except where quadralaterals cross faults. Normalized length changes were in agreement with the kinematic expression of fractures in the bounding shear zones.

Differential Displacements

Horizontal Displacements

The results of the land surveys also determine relative horizontal displacements assuming that one of the control points and the direction of a line element remained fixed. Because of probable errors in the survey farther south, we selected the southeast corner of Section 36, T7N R3E to be fixed and the orientation of the line between that corner and the control point immediately to the west (NE corner, Section 1) to be fixed. Then we followed the survey northward to determine displacements relative to these references. The horizontal displacements appear to be smaller than the error level south of Section 25 (T7N R3E).

The horizontal displacements are known primarily along the eastern and western section lines. Starting with the eastern section line, and the point farthest north (midheight of Section 24, T7N R3E), as well as its two neighbors to the south, the displacement is 3 to 3.1 m , rightlateral, roughly parallel to the northeast edge of the Emerson fault zone (Plate 1). This value is slightly larger than the value of differential displacement of 2.9 m we determined by sighting along legs of towers of the Single-Tower Transmission Line in Section 23, to the northwest (Appendix I). The next control point along the
eastern side is immediately south of the main rupture zone along the northeast side of Tortoise Hill. That point and control points farther south have been displaced horizontally by negligible amounts, less than about 20 cm . Both the amounts and the directions for those points appear to be random (Appendix II).

The northernmost control point along the western section line is within the belt of shear zones, which, here, is about 50 m wide (Plate 2). The relative horizontal displacement is 0.6 m , directed about 30° east of south. Thus the horizontal displacement is oblique to the northeast wall of the rupture zone but roughly parallel to the southwest wall, which passes around the southwest side of Tortoise Hill ridge. The horizontal displacement of the control point immediately to the south is at the margin of error, about 0.2 m , and is toward the east. The horizontal displacements of control points farther south along the western section line apparently are negligible.

One of the control points is in the center of Tortoise Hill, at mid-length along the southern border of Section 24. The horizontal displacement here, relative to the assumed fixed point is 0.8 m south. This displacement is quite interesting because it reflects the combination of right-lateral
differential displacement and southwest thrusting of the block of Tortoise Hill, presumably accommodated mainly by the belt of shear zones that passes around the southwest side of Tortoise Hill.

Differential horizontal displacements were determined relative to quadrilateral points assumed to be fixed immediately southwest Tortoise Hill (fig. 12 and Table 1). The two corners on the southwest end of the ladder of quadrilaterals (Q2-C \& D), one of which moved upwards 0.21 m and the other 0.26 m (Plate 4), are points

C on the right and D on the left in Table 1. Point A is in the upper left and point B is the upper right of quad $Q 2$. Movement relative to points Q2-C \& D is partitioned into components parallel and normal to the fault zone.

According to the bottom part of Table 1, the movement of point A of Quadrangle Q2 was $\delta v=-0.18 \mathrm{~m}$ and $\delta u=0.13 \mathrm{~m}$. In combination with the data shown in Plate 4, point A thus moved vertically upward ($\delta \mathrm{z}$) about 0.72 m , moved to the southeast about $0.13 \mathrm{~m}(\delta \mathrm{u})$, right-lateral, and southwest $0.16 \mathrm{~m}(\delta \mathrm{v})$, thrusting. Point B moved

Figure 12. Map showing fractures bounding margins of Tortoise Hill ridge and differential displacements measured photogrammetically. A ladder of quadrilaterals extends across the ridge. At southeast edge, displacements were measured by land survey of regional grid. Maximum horizontal shift across ridge about 2.65 m . Maximum vertical displacement, relative to an assumed fixed point about 6 km south of ridge, is 1.0 m at center of ridge.

Table 1. Horizontal Displacements of Corners of Quadrilaterals

(Measurements in meters, relative to corners C and D on southwest side of Tortoise Hill ridge).

Quad.	Corner	$\delta \mathbf{u}$ (+SE -northwest) (Parallel to fault)	$\delta \mathbf{v}$ $(+\mathrm{NE}-\mathrm{SW})$ (Normal to fault)	Corner	$\delta \mathbf{u}$	$\delta \mathbf{v}$
3	A	2.64	0.18	B	2.62	0.21
1	D	0.24	0.05	C	0.01	0.04
1	A	0.24	0.05	B	0.01	0.04
	D	0.11	-0.16	C	0.09	-0.24
0	A	0.11	-0.16	B	0.09	-0.24
	D	0.13	-0.16	C	0.05	-0.26
2	A	0.13	-0.16	B	0.05	-0.26
	D	0	0	C	0	0

similarly, 0.81 m vertically, 0.05 m right-lateral and 0.26 m of thrusting ($\delta \mathrm{v}=-0.26 \mathrm{~m}$ and $\delta u=0.05 \mathrm{~m}$). As indicated in Table 1, point C and D of quad 0 are the same as points A and B of quad 2.

Thus, according to the photogrammetric measurements (Table 1), the strike-shift across the entire ridge is 2.62 to 2.64 m , and most of this is accommodated on the main shear zone on the northeast side of the ridge. This leaves about 0.4 m of right shift that we measured with our resurvey of bench marks unaccounted for, but presumably it is distributed northeast or southwest the ladder of quadrilaterals.

The photogrammetric measurements also provide rather detailed information about the horizontal dilation of rock within the ridge. According to the photogrammetric measurements, there was net dilation of between 0.18 and 0.21 m between the most distant points outside the ridge, as measured from corner D of Q2 to corner A of Q3 and from corner C of Q2 to B of Q3, respectively. The dilation is somewhat larger for the most distant points within the ridge,
between 0.21 and 0.30 m , as measured from corner A of Q2 to corner D of Q3 and from corner B of Q2 to corner C of Q3. The dilation within the ridge is expressed in part by a reverse fault dipping about 45° toward the northeast on the southwest side of the ridge and a very high angle reverse fault dipping about 86° toward the southwest on the northeast side of the ridge. These faults, though, do not account for the net dilation of 0.18 to 0.21 m for points outside the ridge.

Vertical Displacements

In late spring 1995, surveyors Kelley and Quinn from SoCalEd also releveled all the points that could be relocated. This included the network of control points for the northern half of Section 12 near Bessemer Mine Road, through Sections 1, 36,25 , over Tortoise Ridge, to the middle of Section 24 northeast of the ridge as well as all the wing points (wooden stakes) that we could find on either side of the line of sections (fig. 13 and Plate 1). They releveled along the same paths followed by the survey crew at the time of the first leveling in 1973 and 1976. The data are discussed in Appendix II.

Figure 13.
Contours of vertical displacement, relative to a point (large shaded circle) near Bessemer Mine Road, showing concentrated uplift at Tortoise Hill ridge, within Emerson fault zone. Land survey control points, surveyed in 1973 and 1994, shown with circles. Circles with cross (arrow moving away from observer) indicate downward movement. Circles with dot (and tips of feathers) indicate upward movement (arrow moving toward observer).

We have contoured the changes in altitude of control points and wing points, assuming that the point at the southeast corner of Section 1, T5N R3E did not change altitude. The changes in altitude are marked beside the diamond-shaped symbols representing the control or wing points in Plate 1. We have put three contours on the map with heavy lines, for $0 \mathrm{~m}, 0.5 \mathrm{~m}$ and 1.0 m of vertical uplift. The 0 m contour in the south was placed by interpolating the data and drawing a contour at 0.01 m and then offsetting the 0 m contour slightly to the southwest of it. Then we removed the 0.01 m contour. According to our results, the entire area south of the 0 m contour changed altitude insignificantly; the measurements indicate that we are ignoring changes in altitude smaller than 2 cm . Note in Table II- 1 that this limit is about half the largest closure error for an entire level line.

The map with three solid contours of vertical uplift (fig. 13) is the main result of the regional leveling. In this contour map we see a highly localized uplift of Tortoise Hill ridge. The ridge was pushed upward about 1 m as about 3 m of right-lateral shift was accommodated across the Emerson fault zone during the Landers earthquake.

We can see more details of the uplift if we interpolate some intermediate contours, especially if we add some data from the photogrammetric analysis of quadrilaterals shown in Plate 4. The changes in altitude are indicated at corners of quadrilaterals in Plate 4. There we fixed the change in altitude of the western corner of Quad Q2 with the regional data presented in Plate 1. The more detailed map shows uplift of about 0.25 m at the southwest edge of the ridge, then further uplift to 0.7 to 0.8 m inside the belt of shear zones on the southwest side of the ridge, to about 0.8 to 0.9 m at mid-width of the ridge, and then back down to zero on the northeast side of the ridge. The ground northeast of the ridge appears to have been downdropped at least as much as 0.3 m . All these data are consistent with an uplift of 1.0 m at the control point in the middle of the ridge, shown at the right-hand edge of Plate 4. Thus we see in more detail how the 1 m
of uplift was distributed across the width of the ridge.

Using both sets of data, the regional survey, and the photogrammetric survey of part of the ridge, we have constructed the map of contours of uplift shown in figure 13 and Plate 1. The regional pattern is an abrupt uplift of the ridge within the bounds of the surrounding belts of shear zones. Where the belt of shear zones on the southwest side of the ridge ends, the uplift of the ridge is less spectacular, but not absent. Thus, the greatest growth of the ridge is an ellipticallyshaped domical area centered on the high ground of Tortoise Hill ridge. There the differential growth relative to the tilted surface to the southwest is about three-quarters of the total, or 0.7 to 0.8 m .

There is significant uplift (0.33 to 0.35 m) at wing points east and southeast of the ridge, suggesting that an area of unknown shape extends from Tortoise Hill in that direction. There is another topographic ridge about 3 km southeast of Tortoise Hill Ridge, bounded on the east by the Emerson fault zone, but we do not know whether it grew during the 1994 earthquake.

Another striking feature of the map of contours of altitude change in Plate 1 is a broad trough underlying the valley northeast of Tortoise Hill, between Tortoise Hill and Rodman Mountains to the northeast. The trough probably is a reflection of a pull-apart basin forming where the shift across the Emerson fault zone is decreasing and the shift across the Camp Rock fault zone is increasing. We described some of the tension cracks associated with about a 1 m transfer zone near the single-tower powerline near the northwest edge of the map in Plate 2.

There are other, more subtle, features in the contour map of uplift. One is a bench or very shallow trough in Sections 23, 25 and 26 (T6N R3E), just southwest Tortoise Hill ridge. Another is a decrease in the decrease of changes of altitude to the southwest. The slope of the uplift is very steep at the southwest edge of Tortoise Hill ridge. Near its edge, there is a belt where there is a
change in altitude of 10 cm over a horizontal distance of about 50 m . In a much broader belt passing through Sections 23, 25 and 31, there is a 10 cm change in altitude over a horizontal distance of about 1 km . In an even broader belt to the south, between the 0.1 m and 0 m contours,
the change is 4 to 5 cm in altitude over a horizontal distance of 1 km . The uplift, then, is not linear, it is essentially an exponential function of distance measured from the southwest toward the belt of shear zones on the southwest side of the ridge.

Summary and Discussion

Magnitudes of Displacements

The repeated land survey determined that 3.0 to 3.1 m of right-lateral, horizontal differential displacement was accommodated across Tortoise Hill relative to a fixed point southwest the ridge. It showed that the center of the ridge moved upward 1.0 m relative to the same reference. The same point moved about 0.57 m in a right-lateral sense. A point within the narrower belt of shear zones northwest of Tortoise Hill moved about 0.6 m in a right-lateral sense and was uplifted about 0.3 m .

The photogrammetric survey with a ladder of braced quadrilaterals shows how the vertical and horizontal displacements are distributed across Tortoise Hill, and show that the ground in the valley to the northeast moved downward, as much as 0.3 m , presumably reflecting the growth of a pullapart basin in that area (Plate 1).

Magnitudes of Strains

With the different methods of determining normalized length changes, we see a range of three orders of magnitude, from about 10^{-2} within the belt of shear zones of the Emerson fault zone on the northeast side of Tortoise Hill ridge, to about 10^{-3} within the belt of shear zones on the southwest side of Tortoise Hill ridge, to about 10^{-5} in ground to the north and south of the Emerson fault zone. The larger normalized length changes largely reflect right-lateral, permanent shearing within the Emerson fault zone whereas the smaller normalized length changes reflect left-lateral, elastic shearing of ground, apparently partly
unloaded by a stress drop across the Emerson fault zone.

Our most detailed measurements are those made with quadrilaterals spanning Tortoise Hill. The measurements of normalized length changes develop a picture of belts of shear zones on either side of the ridge accommodating most of the right-lateral, permanent horizontal deformation that occurred here during the Landers earthquake. The measurements show that the ridge accommodated about 2.7 m of the total amount of 3.0 to 3.1 m of permanent right-lateral shearing across the belt of shear zones. Of the 2.7 m , a small part was distributed across the rupture zone bounding the southwest side of the ridge but most of it was distributed across the rupture zone bounding the northeast side of the ridge. The measurements normal to the belt of shear zones indicate that the ridge accommodated about 0.2 m of net dilation, between points outside the ridge on the southwest and points outside the ridge on the northeast. The dilation was slightly larger, about 0.25 m , for points most widely separated but within the ridge. The larger internal dilation is probably largely a result of thrusting along the southwest side of the ridge. However, the horizontal displacement of the control point for the land survey in the center of Tortoise Hill shows the same result, 0.8 m of movement of the ground of Tortoise Hill directly southward relative to a fixed point about 6 km south along Bessemer Mine Road (Plate 1).

The lack of measurable (larger than 3×10^{-4}) normalized horizontal length changes within the quadrilateral (Q0) near the center of Tortoise Hill shows that the deformations within the center of
the Tortoise Hill were very small. Plate 4 shows a few of the elements of aplite dikes in the monzogranite of Tortoise Hill; these were mapped from the aerial photographs, and the numbers and extent of dikes are a minimum of what is there. The continuity of the dikes indicates that Tortoise Hill consists of relatively large, unfaulted blocks, not merely broken, sheared rock, again suggesting that the differential displacements are concentrated in the rupture zones on either side of the ridge.

The land survey mainly established that the measurable values of normalized length changes are smaller than about 3×10^{-4} southwest Tortoise Hill.

Subsurface Forms of Belts of Shear Zones

The subsurface form of the belt of shear zones and tectonic ridge at Tortoise Hill is, of course, unknown. We know of only two sets of observations that are relevant to subsurface conditions here. One is indirect evidence of zones 50 to 200 m wide at depths as great as 10 km that trapped seismic energy along the Homestead Valley and Johnson Valley belts of shear zones at Landers (Aki, 1994; Li and others, 1994a, 1994b). The other is the documentation of flower structures along some strike-slip faults. Flower structures have been described in seismic images of strikeslip fault zones (Harding and Lowell, 1979; Harding, 1983; Harding and others, 1983; D'Onfro and Glagola, 1983; Plawman, 1983) and in rifts (Genik, 1993; Roberts, 1983). They have a diagnostic branching appearance, from a supposed single branch at depth (generally many kilometers) to two branches above, and then four and so forth as the flower structure approaches the ground surface. The branching structures do not appear in vertical seismic sections of simple thrusting or extensional regimes (e.g., Bally, 1983). Flower structures appear to be complex in vertical sections because a vertical section of a strike-slip fault that is normal to the trace of the fault is a secondary view. A map view of a strikeslip fault is the principal view.

Observations Relevant to Mechanisms of Tectonic Ridge Formation

Several mechanisms have been suggested for the formation of tectonic ridges (and push ups) as well as analogous ridges known as flank ridges in large landslides. Tectonic ridges have been described many times (e.g., Sibson, 1980; Segall and Pollard, 1983; Aydin and Page, 1984; Sylvester, 1988; Bilham and King, 1989; Scholz, 1990). Flank ridges were described in several landslides in Utah by Fleming and Johnson (1989) and by Baum and others (1988a and 1988b) and the Slumgullion landslide in Colorado (Fleming and others, 1996).

Our observations at Tortoise Hill ridge at Landers provide some detailed information about the growth of a tectonic ridge:

1. Fractures define a broad belt of shear zones along the part of the Emerson fault zone that ruptured during the Landers earthquake, extending from somewhat north of the SingleTower Transmission Line to at least the southern end of Tortoise Hill (Plates 1 and 2). The amount of right-lateral shift ranges from 2.9 m at the powerline to about 3.1 m at the southeast end of Tortoise Hill ridge.
2. Horizontal deformations in the vicinity of the Emerson fault zone show left-lateral shearing in rocks even a few hundred meters on either side of the belt of shear zones, representing stress drop and elastic rebound, and rightlateral shearing and probably dilation within Tortoise Hill ridge, reflecting permanent ground deformation within the belt of shear zones.
3. Differential vertical displacements show that Tortoise Hill ridge grew about 1 m in height much as an elongated dome centered on the highest point within the ridge as the Emerson fault zone accommodated about 3 m of rightlateral shift.
4. The elongate-dome-shaped region of growth is bounded on the northwest and southeast sides by belts of shear zones, accommodating both right-lateral and differential vertical shift.
5. Although the uplift of ground was largely concentrated in the ridge, the ground extending for at least 3 km southwest of the ridge was bent upwards. The ground is not merely tilted because the slope of the change in elevation increases as the southwest side of the ridge is approached from several kilometers away.
6. The present topography and geology of Tortoise Hill reiterates and echoes the growth that occurred during the 1992 earthquake (fig. 4). The northeast face of the ridge is steep and rugged where it rises abruptly above the valley of Galway Lake. The southwest face is much lower and extends only about 20 m above the pediment-like rock surface farther to the southwest the ridge. Most of the differential vertical displacement was on the steep, northeast side of the ridge. Sub-vertical scarps there are up to a meter high. The scarps of the low-angle reverse faults on the southwest side of the ridge are only a few tens of centimeters high.
7. Tortoise Hill contains spines of monzogranite near the northeast-bounding shear zone that appear to have been pushed upward differentially.

The measurements and observations at Tortoise Hill can be supplemented with data from landslides to identify potential mechanisms of ridge formation. Observations of map and crosssectional views of flank ridges in landslides, documentation of differential displacements and strains within one ridge in the Aspen Grove landslide in Utah, and examination of maps of other ridges in that area suggest that there are several potential mechanisms of ridge formation (Fleming and Johnson, 1989).

Steps, Jogs or Bends

Tectonic ridges and push ups have been widely reported (e.g. Aydin and Page, 1984) to occur at
opposite steps, jogs or bends along faults (i.e. restraining structures). An opposite bend or step would be a left step, jog, or a left bend in a rightlateral and would be a right step, jog, or a right bend in a left-lateral strike-slip fault. Our observations of structures that form at opposite steps at various places at Landers and in large landslides suggests that the main phenomena of restraining steps are near-surface phenomena such as folding or thrusting rather than the phenomena of ridge formation or another deeper, larger-scale process. For example, the small restraining bend between the second and third elements of the bounding rupture zone near the northwest end of Tortoise Hill produced compression structures. The two elements differ in strike by 10°, and, adjacent to the stepover zone between the elements there was a small dome and tension cracks on the southwest side and thrust faulting on the northeast side of the rupture belt (see left side of Plate 4).

The same was true in landslides. We generally saw low domes or thrust faults at opposite or restraining steps; we did not see ridges at such places (Fleming and Johnson, 1989). The structures that formed at restraining bends in flanks of landslides were restricted to the moving ground; non-moving ground outside the flanks did not contain the compressive structures. The ridges we saw in the landslides were fault-parallel and typically along straight stretches of rupture zones. In fault rupture, however, we note that the compressive structures are on both sides of the mis-aligned elements in the rupture zone.

Although there is no question that localized compression will be developed in ground in an area with an opposite step along a strike-slip fault, the importance of opposite steps in the formation of tectonic ridges remains to be demonstrated. Relations between the size, type, position, and orientation of the compressive features and the geometry of the constraining structure remain unresolved.

Dilatancy

The ridges, both in landslides and along faults, could result from dilatancy of rocks in shear
zones (Johnson, 1995). We note that strike-slip faulting commonly occurs in belts of shear zones rather than across single fault surfaces, so ridges could be associated with the belts of shear zones rarther than individual fault strands.

The growth of several ridges along the flanks of landslides in Utah and Colorado might be analogous to ridge formation along strike-slip faults (Fleming and Johnson, 1989; Fleming and others, 1996). Specifically, our observations of ridges in landslides and along strike-slip faults lead us to suggest the following:

1. Ridges occur within belts of shear zones along faults with predominant strike-shift differential displacements. In the case of landslides, the belts of shearing are within the active landslide debris as are the ridges, but they are adjacent to the bounding or internal fault zones, not within non-deforming debris. In the case of tectonic ridges we have examined, the ridges are within a belt of shear zones.
2. The belts of shear zones occur at depth as well as at the ground surface.
3. Ridges are a result of localized increase in pressure and volume within the belts of shear zones beneath the ground surface. The increase in pressure and volume pushes the ground upward within the ridge.
4. The increase in pressure and volume can be a result of positive dilatancy of the fractured rock within the belt of shear zones beneath the ground surface (e.g., Johnson, 1995).
5. Some ridges form in certain materials that occur within belts of shear zones. The materials that produce ridges translate along the fault zone as the ridge grows, carrying the causative mechanism with them, and growing as a dome that presumably has roughly the area of the horizontal area of the mass of dilatant materials below. Where ridges are a result of dilatation, they have a finite period of growth because the material eventually dilates to a constant state volumetrically.

In contrast, if ridges were a result of a step or similar irregularity in the shape of a single fault, they would grow essentially at a point and then be translated away from the causative step and be dormant thereafter. The causative mechanism would be static. The active part of the ridge should be at one end of the ridge.

Wedging

Another mechanism for producing ridges is suggested by three observations: Tortoise Hill and some other tectonic ridges in the Landers area have an enveloping belt of shear zones. Flower structures at depth have been identified along some strike-slip faults with seismic exploration techniques. Finally, faults typically are straight in the direction of fault slip but are highly curved in the direction normal to the direction of slip. For example, normal and reverse faults are characterized by highly irregular and sinuous surface traces, but strike-slip faults are characterized by relatively straight surface traces. Thus we would expect the Emerson fault zone to have a highly sinuous trace if we would examine it in vertical section. A change in the sinuous trace with horizontal position near the ground surface could cause the ground to rise or fall near the trace of the fault.

The overall form of Tortoise Hill ridge is a wedge-shape, both in plan and, presumably, in cross section (fig. 14C). The dip of the bounding faults near the ground surface indicates that they would converge at depth. As shown in Plate 1, or especially Plate 2 , the plan view of the northwest part of Tortoise Hill is a wedge, bounded on the northeast by the main rupture zone and on the southwest by the thrust/right-lateral rupture zone. The latter rupture zone is a splay that diverges from the main rupture zone. The trace of the trace of the splay is oriented with a clockwise trend with respect to the trend of the main, right-lateral, rupture zone on the northeast, in the sense that G K. Gilbert noted for faults along the surface rupture north of San Francisco following the 1906 earthquake and along normal faults in Utah (Gilbert, 1928, p. 13).
A.
 STRUCTURE
B.

C.

Figure 14. Idealizations of ruptures along Emerson fault zone suggesting mechanisms for growth of Tortoise Hill ridge and tilting of ground southwest of fault zone.
A. Idealization of canoe structure, consisting of a main fault, a splay fault, and a tilted floor of the wedge between the main and splay faults. If the wedge moves more slowly than the blocks to either side, the sloping floor will cause the wedge to rise, as an idealized ridge.
B. Idealization of a twisted splay. The part of the block above the splay moves more slowly than the blocks on either side of the main fault. As a result of the twist in the shape of the splay, part of the block near the fault tilts.
C. Idealization of proposed canoe structure beneath Tortoise Hill ridge.
D. Idealization of proposed twisted splay at deeper level beneath Tortoise Hill ridge.

Figure 14C shows Tortoise Hill interpreted as a simple flower structure, a wedge, within a belt of shear zones. The idealized mechanism of growth is illustrated in figure 14A. The mechanism has two essential parts, one geometric and the other kinematic. The geometric part is a sloping base or bottom of the wedge. The kinematic part is that the wedge moves more slowly than the block of ground on the same side of the main rupture. Specifically applied to Tortoise Hill, the block of ground to the east (left in fig. 14A) has a relative displacement toward the south. The block of ground to the west, except for the wedge, has the same relative displacement, but toward the north. The wedge has a smaller relative displacement toward the north. Thus the wedge is lifted as the block to the west moves beneath it.

At Tortoise Hill, the wedge is imagined to be shaped like half of a sway-backed canoe, with the front of the canoe deeper than the midlength. Thus, since Tortoise Hill moves more slowly, relatively, northwesterly, than the ground to the southwest, the hill rises, forming a tectonic ridge.

An appealing feature of this explanation of the growth of Tortoise Hill ridge, besides that it is consistent with the field observations and measuements, is that the same basic mechanism can explain the tilting of the pediment to the southwest of the ridge. If there is a deeper splay within the flower structure, perhaps nearly horizontal, but twisted about an axis parallel to the main fault, the same differential displacements discussed above would produce a tilting of the ground. The basic mechanism is illustrated in figure 14B and its application to Tortoise Hill is suggested in figure 14D.

Other reasons we favor this mechanism for some ridges is that ridges within wedge-like intersections of a main fault and a splay fault along rightlateral, strike-slip faults have been mapped throughout the Landers area. There are several along the Emerson fault zone next to Emerson Lake, one along the Calico fault zone about 8 km northeast of Tortoise Hill, and two along the Johnson Valley fault zone near Melville Lake (Dibblee, 1964, 1967a, 1967b). Finally, the pro-
posed splay faults are similar to simple flower structures observed in seismic profiles of strikeslip and rifting areas throughout the world (e.g., Harding, 1983; Harding and Lowell, 1979; Harding and others, 1983; D'Onfro and Glagola, 1983; Genick, 1993).

Final Comments

We have identified geometric and material property conditions that could produce tectonic ridges. An opposite step or bend in a fault produces compression that may produce a dome and thrust faults and perhaps even a ridge. A dilative material in a broad shear zone near the ground surface could develop sufficient pressure at depth to intrude more mobile material at depth and extrude some material onto the ground surface. This is an important mechanism of ridge-formation in landslides, and may well be important along some faults. Simple flower structures within strike-slip fault zones that change shape along strike could produce tectonic ridges and tilt the ground on either side of a fault zone.

Presumably ridges can form in all these ways and it would be foolish to think there are not other ways. There is no reason to believe that structures with the one name must be produced by only one mechanism. In landslides, for example, we have not noticed ridges that have formed at splays of the main bounding shear zone. At Landers, many of the tectonic ridges occur between a splay and a main rupture zone. Perhaps many of these formed by wedging. But not all tectonic ridges occur adjacent to a splay.

Only the splay mechanism specifically addresses the tilting of the ground to form a pediment-like slope southwest the fault zone (Plate 1).

We have stretched our observations and survey data to and perhaps beyond logical limits in the search for a process model for ridge formation. Indeed, many of the survey measurements are near or below the threshold of accuracy. The data presented here do constrain various mechanisms of formation but do exclusively identify one. The most important outcome of this investigation is in the GPS/trilateration, survey, and photogram-
metric data that provide an internally consistent description of real-time tectonics. The fractures, the displacement, the normalized length changes, and the vertical changes are each part of the larger deformational picture of a small part of the
rupture zone that has heretofore been lacking in neotectonics. The integration of these different kinds of data dramatically illustrates the interrelationships between fracture orientations and kinematics with the measurable deformations.

References Cited

Aki, K., 1994, Seismological expressions of the fine scale structure of fault zones [abs.]: Baltimore, Maryland, Program of AGU Spring Meeting, p. 106.

Aydin, A., and Page, B.M., 1984, Diverse Pliocene-Quaternary tectonics in a transform environment, San Francisco Bay region, California: Geological Society of America Bulletin, 95, p. 1303-1317.

Bally, A.W., 1983, Seismic expression of structural styles-A picture and work atlas: American Association of Petroleum Geologists, Studies in Geology, Series 15, four volumes.

Baum, R.L., and Fleming, R.W., 1991, Use of longitudinal strain in identifying driving and resisting elements in landslides: Geological Society of America Bulletin., 103, p. 1121-1132.

Baum, R.L., Fleming, R.W., and Ellen, S.E., 1989, Maps showing landslide features and related ground deformation in the Woodlawn area of the Manoa Valley, City and County of Honolulu, Hawaii: U.S. Geological Survey Open-File Report 89-290, 16 p.
Baum, R.L., Fleming, R.W., and Johnson, A.M., 1988a, Kinematics of the Aspen Grove landslide, Ephraim Canyon, Central Utah: U.S. Geological Survey Bulletin 1842F, 34 p.

Baum, R.L., Johnson, A.M., and Fleming, R.W., 1988b, Measurement of slope deformation using quadrilaterals: U.S. Geological Survey Bulletin 1842B, 23 p.

Bilham, R., and King, G., 1989, The morphology of strike-slip faults; examples from the San Andreas fault, California: Journal of Geophysical Research, 94, p. 10204-10216.

Cruikshank, K.M., Zhao, G.Z., and Johnson, A.M., 1991, Duplex structures connecting fault elements in Entrada Sandstone: Journal of Structural Geology, 13, p. 1185-1196.

D'Onfro, P., and Glagola, P., 1983, Wrench fault, southeast Asia, in Bally, A.W., ed., Seismic expression of structural styles: Bulletin of the American Association of Petroleum Geologists, 4.2, p. 9-12.

Dibblee, T.W., Jr., 1964, Geologic map of the Rodman Mountains Quadrangle, San Bernardino County, California: Miscellaneous Investigation Map I-430.

Dibblee, T.W., Jr., 1967a, Geologic map of the Emerson Lake Quadrangle, San Bernardino County, California: Miscellaneous Investigation Map I-490.

Dibblee, T.W., Jr., 1967b, Geologic map of the Old Woman Springs Quadrangle, San Bernardino County, California: Miscellaneous Investigation Map I-518.
Fleming, R.W., and Johnson, A.M., 1989, Structures associated with strike-slip faults that bound landslide elements: Engineering Geology, 27, p. 39-114.
Fleming, R.W., Baum, R.L., and Savage, W.Z., 1996, The Slumgullion landslide, Hinsdale County, Colorado: Geological Society of America, Guidebook for Field Trips, 21 p.

Frazer, C.S., and Gruendig, L., 1985, The analysis of photogrammetric deformation measurements on Turtle Mountain: Photogrammetric Engineering and Remote Sensing, 51, p. 207216.

Genik, G.J., 1993, Petroleum geology of Cretaceous-Tertiary rift basins in Niger, Chad, and Central African Republic: Bulletin of the American Association of Petroleum Geologists, 77, p. 1405-1434.
Harding, T.P., 1983, Divergent wrench fault and negative flower structure, Andaman Sea, in Bally, A.W., ed., Seismic expression of structural styles: Bulletin of the American Association of Petroleum Geologists, 4.2, p. 1-8.
Harding, T.P., and Lowell, J.D., 1979, Structural styles, their plate-tectonic habitats, and hydrocarbon traps in petroleum provinces: Bulletin of the American Association of Petroleum Geologists, 63, p. 1016-1058.
Harding, T.P., Gregory, R.F., and Stephens, L.H., 1983, Convergent wrench fault and positive flower structure, Ardmore Basin, Oklahoma, in Bally, A.W., ed., Seismic expression of structural styles: Bulletin of the American Association of Petroleum Geologists, 4.2, p. 13-17.
Hudnut, K.W., and many others, 1994, Co-seismic displacements of the 1992 Landers earthquake sequence: Bulletin of the Seismological Society of America, 84, p. 625-645.
Jennings, C.W., 1973, State of California, Preliminary fault and geologic map, south half, scale 1:750000: California Division of Mines and Geology, Preliminary Report 13.
Jennings, C.W., 1994, Fault Activity Map of California and Adjacent Areas: California Division of Mines and Geology, Geologic Data Map no. 6, scale 1:750,000.

Johnson, A.M., 1995, Orientations of faults determined by premonitory shear zones: Tectonophysics, v. 247, p. 161-238.

Johnson, A.M., and Fleming, R.W., 1993, Formation of left-lateral fractures within the Summit Ridge shear zone, 1989 Loma Prieta, California, earthquake: Journal of Geophysical Research, 98, p. 21,823-21,837.
Johnson, A.M., Fleming, R.W. , and Cruikshank, K.C., 1993, Broad Belts of Shear Zones as the Common Form of Surface Rupture Produced by the 28 June 1992 Landers, California, earthquake: U.S. Geological Survey Open-File Report 93-348, 61 p.
Johnson, A.M., Fleming, R.W., Cruikshank, K.M., Martosudarmo, S.Y., Johnson, N.A., Johnson, K.M., and Wei, W., 1997, Analecta of structures formed during the 28 June 1992 Landers-Big Bear, California, earthquake sequence: U.S. Geological Survey Open-File Report 97-94, 67 p., 7 plates.

King, N.E., and Savage, J.C., 1983, Strain-rate profile across the Elsinore, San Jacinto and San Andreas faults near Palm Springs, California, 1973-81: Geophysical Research Letters, 10, p. 55-57.

Li, Y.G., Vidale, J.E., Aki, K., Marone, C.J., and Lee, W.H.K., 1994a, Fine structure of the Landers fault zone: Elementation and the rupture process, Science, 265, p. 367-370.
Li., Y.G., Aki, K., Adams, D., and Hasemi, A., 1994b, Seismic guided waves trapped in the fault zone of the Landers, California, earthquake of 1992: Journal of Geophysical Research, 99, p. 11705-11722.
Martosudarmo, S.Y., Johnson, A.M., and Fleming, R.W. , 1997, Ground fracturing at southern end of Summit Ridge caused by October 17, 1989 Loma Prieta, California, earthquake sequence: U.S. Geological Survey Open-File Report 97127, 42 p., 5 plates.

Plawman, T.L., 1983, Fault with reversal of displacement, central Montana, in Bally, A.W., ed., Seismic expression of structural styles: Bulletin of the American Association of Petroleum Geologists, 3.3, p. 1-12.

Prescott, W.H., and Lisowski, M., 1983, Strain accumulation along the San Andreas fault sytem east of San Francisco Bay, California: Tectonophysics, 94, p. 41-56.
Roberts, M.T., 1983, Seismic example of complex faulting from northwest shelf of Palawan, Philippines, in Bally, A.W., ed., Seismic expression of structural styles: American Association of Petroleum Geologists, 4.2, p. 18-24.
Savage, J.C., and Gu, G., 1985, The 1979 Palmdale, California, strain event in retrospect: Journal of Geophysical Research, 90, p. 10,301-10,309.

Scholz, C.H., 1990, The mechanics of earthquakes and faulting: Cambridge University Press, 439 p .

Segall, P., and Pollard, D.D., 1983b, Nucleation and growth of strike-slip faults in granite: Journal of Geophysical Research 88, p. 555-568.

Sibson, R.H., 1980, Transient discontinuities in ductile shear zones: Journal of Structural Geology, v. 2, p. 165-171.
Stein, R.S., and Thatcher, W., 1981, Seismic and aseismic deformation associated with the 1952 Kern County, California, earthquake and relationship to the Quaternary history of the White Wolf fault: Journal Geophysical Research, 86, p. 4913-4828.

Sylvester, A.G., 1988, Strike-slip faults:
Geological Society of America Bulletin, v. 100, p. 166-1703.

Thatcher, W., 1975, Strain accumulation in northern California since 1906: Journal of Geophysical Research, 80, p. 4873-4880.

Thatcher, W., 1979, Horizontal crustal deformation from historic geodesic measurements in southern California: Journal of Geophysical Research, 84, p. 2351-2370.

Thatcher, W., 1983, Nonlinear strain buildup and the earthquake cycle on the San Andreas fault: Journal of Geophysical Research, 88, p. 58935902.

Thatcher, W., and Fujita, N., 1984, Deformation of the Mitaka rhombus; strain buildup following the 1923 Kanto earthquake, central Honshu, Japan: Journal of Geophysical Research, 89, p. 3102-3106.

Zachariasen, J., and Sieh, K., 1955, The transfer of slip between two en-echelon strike-slip faultsA case study from the 1992 Landers earthquake, southern California: Journal of Geophysical Research, 100, p. 15,281-15,301.

Appendix I. Determination of Displacements at Single-Tower Power Line

Surveyors use a method of measuring lengths of braced quadrilaterals in order to determine the position of points. We used the method to compute displacement across the narrow shear zone that passed between the legs of a damaged tower. The following sketch is a map of the legs:

SKETCH OF A LEG, AND POINT OF MEASUREMENT:

Figure 1-1 Sketch of transmission tower, narrow shear zone and a tower leg.

Table I. 1 Measurements and Corrected Lengths for Damaged Tower

From	To	Measurement (m)	Corrected
A	B	8.671	8.669
A	C	12.986	12.984
A	D	7.297	7.295
B	C	7.467	7.465
B	D	9.576	9.576 (assumed same)
C	D	8.733	8.731

Assuming that the points are essentially in the same plane, we use the measurements to compute all the interior angles of the quadrilateral and then compared the sum of the angles of the four corners, A...D, to 360°. The lengths of all sides except BD were then adjusted until the error was zero. These are the corrected lengths. The measurement error is about 2 mm .

Then we moved to the next tower (SoCalEd no. 150/2) to the northeast of the damaged tower and made the same set of measurements. The labels for the legs are the same. Note that we are assuming that there is no shearing in the legs of the towers outside the identifiable shear zone. Table I. 2 shows the table of measurements.

Measurements were not as precise here because the tower was standing, and the points could not be directly measured by tape on the diagonals. The measurement error for this tower was about 2 cm , so changes of 2 cm or less are insignificant. We note primarily that the tower is a nearly perfect rectangle, about 7.9 m one way and 7.3 m the other.

In calculating the stretches in different directions as well as the differential displacement across the rupture zone that passed through the downed tower, we assume that side BC remained fixed in orientation but slightly lengthened whereas other sides changed orientation and changed length. We

Table I.2. Measurements and Corrected Lengths for Undisturbed Tower to northeast

From	To	Measurement (m)	Corrected
A	B	7.872	7.849
A	C	10.764	10.741
A	D	7.328	7.305
B	C	7.342	7.319
B	D	10.754	10.754 (assumed)
C	D	7.928	7.905

east side of the shear zone; and thus, qualitatively supports the more precise measurement method.

We determined differential shift across the entire belt of shear zones at the single-tower powerline as follows: We sight along corresponding legs of several towers in each direction and determine the net offset. The following sketch will help with the explanation. At the right is the typical quadrilateral, with corners A, B, C and D.

At the left is a series of three towers, two to southwest the rupture belt and the one within the rupture belt. The line $x z$ is established by sighting along the leg D of the farthest tower and leg D of the next tower. Then the offset of leg D of the tower within the rupture zone defines part (0.21 m) of the offset across the rupture zone. One then turns around and sights northeast along legs D of two towers to the northwest,
assume that the original lengths are those given in Table I.2.

Using the distances between the legs of the deformed tower, and the corresponding distances between the legs of a neighboring, undeformed tower, we calculated that the narrow shear zone that passed between pairs of legs of the tower accommodated 2.7 m of right-lateral differential displacement along, and 2 to 7 cm of dilation normal to the trace of the shear zone within the base of the tower. We noted an error of about 2 cm in our measurements of the reference tower, so we suspect that 2 to 7 cm of dilation is well within the limits of the combination of that known error and the inherent error caused by assuming that the deformed and undeformed towers originally had the same shape at their bases. We would have to suspect that the dilation was not detectable for the shear zone at the tower.

Our assumption that the deformed and intact towers had the same dimensions at ground level may be incorrect. We note that the legs of the tower are trapezoidal and, if they are buried to different depths or in markedly sloping ground, distances between legs will not be the same. If we assume only that the perimeter of the deformed tower was a rectangle before fault movement, we can calculate right-lateral displacement from the measurements of the sides and diagonals of the braced quadrilateral. This more accurate method results in a value of about 2.6 m of shear across the north-

	Table I.3 Estimates of Shift Across Emerson Fault Zone			
Leg	Direction	Shift (m)	Total	Apparent Right-Lateral Shift NE of Shear Zone (m)
A	NE	3.27		0.6
	SW	0.21	3.48	
B	NE	1.04		1.0
	SW	2.77	3.81	
C	NE	0.72		0.7
	SW	2.8	3.52	
D	NE	3.39		0.7
	SW	0.21	3.6	

much as shown above, and establishes that the leg D of the tower within the rupture zone is offset 3.39 m (right-lateral) relative to those other towers. The total right-lateral offset, then is 3.6 m .

We made this same set of measurements for each of the legs of the tower within the rupture zone in order to determine the total shift as well as an estimate of the error of the method. The following table summarizes the results. The measurements of shift across the rupture belt in the direction of the power line indicate that the total shift is between 3.5 and 3.8 m and average about 3.6 m.

This estimate does not separate the right-lateral shift in the shear zone of the Emerson fault from right-lateral shift outside the shear zone. We have shown that the right-lateral shift across the northeast side of the rupture zone is about 2.7 m . Likewise, the right-lateral shift within the rest of the zone to the southwest contains an additional 0.2 m . The total right-lateral shift within the entire shear zone then is about 2.9 m . Note, however, that the legs B and C, which are outside the shear zone to the northeast also have an apparent right-lateral shift of 1.04 and 0.72 m with
respect to the towers farther to the northeast. Apparently, the shift outside the belt of surface rupture is a result of opening of the swarm of tension cracks (Plate 3) that trend approximately $\mathrm{N} 10^{\circ} \mathrm{E}$ toward the Camp Rock fault zone. The function of the tension cracks would be to transfer right-lateral displacement across a releasing stepover between the fault zones.

The line of towers is oblique to the direction of opening of the tension cracks by about 35°, and adjustment of the displacement to account for this produces an apparent displacement normal to the tension cracks of about 1.1 m .

Our best estimate of right-lateral shift within the shear zone at the deformed tower is 2.9 m . The balance of deformation obtained by sighting along the line of towers is the result of opening of tension fractures that apparently step between the Camp Rock fault and the Emerson fault. The amount of shift produced by this opening is about 1 m . If the fractures indicate displacement transfer between faults, then we expect displacement on the Emerson fault to the northwest to be markedly diminished. This is at least qualitatively true as rupture on the Emerson fault ends a short distance to the northwest.

Appendix II. Survey and Resurvey of Control Points

Permanent monuments were placed by Southern California Edison during the 1970's. The monuments consist of a pipe extending a few inches out of the ground and buried in a concrete-filed hole. The pipe was also filled with cement, and a mark about 1 mm in diameter was sunk in the center to mark the survey point. The monuments were set on each quarter-section along northsouth sections lines and each half section on eastwest section lines for sections 24,25 and 36 as shown in the official record of the survey, Book 31, page 90, San Bernardino County.

We arranged to have the monuments resurveyed by contacting Richard Moses ${ }^{4}$, SoCalEd, who participated in the survey work in the 1970's. The agreement was that the earlier survey would be retraced, so that we could compare lengths and angles between monuments. The purpose of the re-survey was to calculate strains, which involves comparison of the positions of the same material points, so we wanted the measurements to be directly comparable.

Horizontal Control Data

The horizontal control was established in 1994 by using a total station surveying instrument. According to Mr. Moses, angles should be accurate to within 5 seconds and distances should be accurate to within 10^{-5} for the distances to be shot. The measurements of distances and angle are shown inthe tables of data.

Vertical Control Data

All the monuments plus as many wing points as could be located were leveled, using a new barcoded instrument. The wing points were marked only with wooden stakes, so it is remarkable that we found as many of them as we did. We found most of the wing points on the east side and at
least half of those on the west side of the area. The wing points and monuments that were leveled are indicated by gray diamonds in Plate 1. The two or three-digit number written by each diamond is the change in elevation, relative to a point near the south end of the array marked with a black diamond in Plate 1.

The leveling was done over closed loops. For example, the line of wing points on the east side was started with point CP1, just north of Bessemer Mine Road and along the boundary between sections 12 and 7, which was part of an independent loop. The line extended from there eastward to the end wing point, and then straight northward along the line of wing points, across the ridge and to the wing point in section 19. From there the line extended to CP-19, which was part of another loop. The elevation of CP-19 was different by 4.1 cm . This error was redistributed back through the entire line, so one would expect errors for points along this line to be much smaller than 4.1 cm . The actual error for each point is probably less than 0.4 mm .

The closure errors for the 1995 survey are indicated in Table II.1.

Table II.1. Closure Errors of Level Lines

Location
Closure Error (mm)

Section 123
Section $1 \quad 0.4$
Section $36 \quad 26$
Sections 25 and $24 \quad 2.2$
point in ridge 0.1
wing points on east side 41
wing points on west side 42

[^3]Comparison of the lengths, angles and elevations for the two surveys indicates that there must be errors in one data set or the other. For example, the elevation of CP30 on the southeastern boundary of Section 36 apparently moved downward 0.89 foot. We know from several lines of evidence that the point did not decrease in elevation. If the recorded elevation of the 1973-76 survey was in error by one foot, the elevation of point CP30 would have moved upward 0.11 foot. This is a reasonable value. If a 0.1 -foot contour is drawn through the data, the resulting contour would trend $\mathrm{N} 50^{\circ} \mathrm{W}$, and the line would be defined by five other points that apparently are correct. Similarly, the elevation of CP35 apparently is
incorrect. Other than these two readings, the elevations appear to be credible.

The differences in horizontal distances and angles also contain errors. They are more difficult to evaluate. Some of the computed changes in distances and angles are simply too large to be credible. As a result of the errors, the computed displacements are highly dependent on the path. Thus, when we compute displacements, we follow paths through the points defined by lengths and angles that appear to be correct. For the displacement data reported in our maps, we chose a path near the southwest side of the tectonic ridge. The path generally follows the east side of the survey data.

Appendix III. Photogrammetric Measurements

Method

There are two ways that the method of sequential aerial photogrammetry can supplement deformation measurements with other techniques. First, aerial photographs, in combination with adequate survey control of points that can be identified on the photographs, are an archival record of the three-dimensional configuration of the ground surface, containing an almost unlimited number of potential measurement points and lines. Other methods are limited to the points actually surveyed. Second, annual surveys of points in southern California, which are being taken by the Southern California Earthquake Center to provide essential data on the gross tectonic deformation of a region, are necessarily relatively sparse, whether the data are collected by surveying distances and angles, or by GPS measurements. In contrast, each aerial photograph potentially contains many measurement points, but necessarily covering a relatively small area, so aerial photographs are primarily useful for investigating deformations within and adjacent to fault zones.

At Landers, we had a set of photographs taken in 1976 by Southern California Edison, who established a network of monuments to control photogrammetric work with the photographs. The post-earthquake photographs contain no targets with known ground control, so we spent about two weeks surveying monuments that can be identified precisely on the 1992 photographs to serve as ground control of photogrammetric models.

The photogrammetric methods are being developed primarily in collaboration with Jim Messerich of the Geologic Division Plotter Laboratory at the U.S. Geological Survey in Denver, Colorado. Coordinates in deformed and non-deformed ground are measured using a Kern DSR-11 analytical stereoplotter. The stereoplotter has the capability of reproducing positions on an aerial photograph to plus or minus 5 microns. This limits the measurements of position on the

1:6000 aerial photographs to plus or minus 3 cm on the ground.

Measurements

After testing the photographic method for consistency and reproducibility, we set up a ladder of four quadrilaterals that span Tortoise Hill ridge just northwest of the culmination of the ridge (Plate 4). Quadrilateral 2 crosses the thrust/right lateral fault on the southwest side of the ridge, Quadrilateral 0 is next to 2 and includes no known faults. Quadrilateral 1 is next to 0 and crosses a minor fault. Quadrilateral 3 crosses the main rupture zone on the northeast side of the ridge.

We will describe the procedure used to process the data by using data from Quadrilateral 1. Table III. 1 shows the data and computed results. For each quadrilateral, three complete series of measurements were made. The lengths, $A B, B C, C D$, DA, AC and BD were measured in each series. On the third and fourth page of Table III. 1 are the three series of measurements for the 1976 photos and for the 1992 photos. The actual measurements are entered as bold-faced quantities. To the right of 1st data series for 1976 are the $x-, y$ - and z - components of the sides or braces, such as $A B$. The same results are presented for each series.

The first check of the measurements is made by copying the data, pair by pair, onto page two of the Table III.1. The ones shown there are the last processed, data series three for 1976 and 1992. After the data are copied there, error analysis begins. The measurements are converted to those of a plane, horizontal quadrilateral. Then all the angles are calculated, as indicated. The angles are summed and then 360° are subtracted. The residual is identified as error in bold face. At this point we learn something about the size of the error in terms of lengths of sides and braces of the quadrilaterals. inc1 is the correction factor for the 1976 data and inc2 is the correction factor for the 1992 data (in this case, the corrections are in meters.) Thus, we note that to make the errors in angles
essentially zero, we add about 1.5 cm to the lengths of the sides of the quadrilateral for the 1976 data and subtract about 2.4 cm from the lengths of the sides of the quadrilateral for the 1992 data. This gives us a good idea of the accuracy of the data. Finally, we compare the errors to the lengths of the sides of the quadrilateral to obtain estimates of the error due to measurement. In this case, the error for the 1976 data ranges from 1.3 to 2×10^{-4} and for the 1992 data the error ranges from 2 to 3×10^{-4}. The idea is that strain measurements smaller than 3×10^{-4} would be negligible for this quadrilateral.

The errors (in percent) are given beneath each data set on pages 3 to 5 of Table III. 1

At this point we typically make an adjustment of the data. If the errors are simply too large, or if we see obvious errors in the data, we adjust them
as follows. Adjacent to the 1st data series on the third page is also a summary of the resultant lengths, $\mathrm{dr}^{2}=\mathrm{dx}^{2}+\mathrm{dy}^{2}+\mathrm{dz}^{2}$ for all three series, for comparison. Note that several of the numbers in the last four columns are in bold face. The $d r$ value calculated for each of these was so different from those in the other series that is was rejected in favor of the average of the others. For example, the dr length for $A B$ in the first series was computed from $\mathrm{dx}=51.57, \mathrm{dy}=-53.564$ and $\mathrm{dz}=$ -0.747 , so that $\mathrm{dr}=74.358$. This was judged to be too far from the value of 74.341 for the other two series, so it was replaced by 74.341. All these adjustments are shown in bold face numbers. In this example, four lengths were adjusted. Note that, after the adjustments, the errors are recalculated.

Tables III.2, 0, 1, and 3 present the data for all four quadrilaterals. Table III. 4 presents data used to compute displacements of corners of quadrilaterals.
Table III. 0
Program to check length measurements in a quadrilateral and to compute magnitudes of errors In boulder field within shear zone (near base camp). Known hereafter as Quad 0. "Note that horizontal and vertical, not slope distances are to be measured."

Summary of Data (\% strain)

$$
\begin{gathered}
\text { AD } \\
0.0226 \\
0.08156 \\
0.05228 \\
0.02211 \\
0.08103 \\
0.05176 \\
-0.00533 \\
0.05358 \\
0.02432
\end{gathered}
$$

0.0427 in percent strain
$4.27 \mathrm{E}-04$ in strain
$4.45906 \mathrm{E}-05$
0.000168096
$1.02936 \mathrm{E}-05$
$4.69391 \mathrm{E}-05$
0.000163622
$9.20954 \mathrm{E}-06$
0.000255909
$1.32508 \mathrm{E}-05$
3

O
$5.2924 \mathrm{E}-05$
$6.8477 \mathrm{E}-07$

0.00015102
4.1556E-05
$\quad B C$
0.0221
$2.21 \mathrm{E}-04$
46%

-

Altitudes

®
N
N̈
N
O्N
©
©

шш
шய

－	さ	N000		
\bigcirc	앙	0		

$$
\begin{aligned}
& \ddagger \\
& \hline
\end{aligned}
$$

$$
\begin{array}{ll}
0 \\
\stackrel{\circ}{N} & 8 \\
0 & 0 \\
0 & ب
\end{array}
$$

\[

\]

56.906
-59.578

O 犬 O O O

$$
\begin{array}{r}
86.127 \\
-143646
\end{array}
$$ O．

$\underset{\sim}{\text { I }}$ $\stackrel{\infty}{\sim}$
\％

$\times \underset{\sim}{\circ} \stackrel{\Gamma}{\circ}$ ก

$$
1
$$

$\stackrel{\infty}{0}$
$\begin{array}{llll}\text { The stakes of the quadrilaterals are arranged as follows：} \\ \begin{array}{llll}\text { Before：} & \text { A } & \text { B } & \text { After：}\end{array} \quad \text { A } \\ & \text { D } & \text { C } & \end{array}$
＂note：AB，for example，is horizontal distance between A and B．＂

$A D$	$A C$
82.790	144.278
$A>D$	$A>C$
4.844	10.024

21902.863

$$
0
$$

 Ad
82.870
A＞d
4.722
 $\underset{\sim}{\square} \stackrel{L 0}{0} \underset{\sim}{\infty}$

$$
\begin{aligned}
& \text { z Z }
\end{aligned}
$$言机

든 은 은응응응은 으
Start of Error Computations:
The lengths of the sides of the plane quadriaterals:

Start of Error Computations: The lengths of the sides of the plane quadriaterals:				
AB	BC	CD	AD AC	BD
before: 108.074	$074 \quad 84.085$	112.963	82.790144 .278	132.336
Ab	bc	cd	Ad Ac	bd
after: 107.918	918 84.153	112.915	82.870144 .337	132.296
Compute angles of plane quadrilaterals (in radians).				
angle no:	1	2	3	4
angle:	CAB	ACB	CBD	CDB
before 0.617	. 617294811	0.83905444	1.010720798	0.682313522
angle:	cAb	Acb	cbd	cdb
after 0.617	. 617944276	0.83741827	1.010485353	0.683321998
"Now adjust lengths through increments, inc1 (before) and inc2 (after)"				
Error Checking (angles in degrees).				
angle no:	1	2	3	4
			Total	Error (degrees)
before	35.37	48.07	57.91	39.09
	ERROR 1.33	E-05 degrees		
after ER	35.41	47.98	57.90	39.15
	ERROR -1.	-05 degrees		
"Note: in following, AC and Ac are held fixed."				
"correction for "'before"' data:"				inc1=
"correction for "'after"'data:"				inc2=
	AB	BC	CD	AD
	108.052	84.063	112.941	82.767
	Ab	bc	cd	Ad
	107.949	84.183	112.946	82.901
Errors in Triangles (angles in degrees)				
triangle:	ACD	ACB	BDA	BDC
before	0.00	0.00	0.00	0.00
triangle:	Acd	Acb	bdA	bcd
after	0.00	0.00	0.00	0.00

[^4] $\begin{array}{lclc} & & & \\ & \text { AB } & \text { BC } & C D \\ \text { before: } & 108.074 & 84.085 & 112.963 \\ & \mathrm{Ab} & \mathrm{bc} & \mathrm{cd} \\ \text { after: } & 107.918 & 84.153 & \mathbf{1 1 2 . 9 1 5}\end{array}$ | Compute angles of plane quadrilaterals (in radians). | | | |
| :--- | :---: | :---: | :---: |
| angle no: | 1 | 2 | 3 |
| angle: | CAB | ACB | CBD |
| before | 0.617294811 | 0.83905444 | 1.010720 |
| angle: | cAb | Acb | cbd |
| after | 0.617944276 | 0.83741827 | 1.010485 |

5
ACD
0.609504007
Acd
0.610366909

- $\stackrel{\text { Nे }}{\text { in }}$ 7
54.62
54.53

∞ $\stackrel{\circledR}{\infty}$ 7
ADB
0.953262245
Adb
0.951803699 $A C$
144.278
$A c$
144.337
Estimates of Errors in Lengths and Stretches:
"Apparent stretch and length change values, due solely to error, would be:"

Stretches of Line Segments in Quadrilateral
Stretch Values Computed from Slope-Distance Measurements of Qadrilateral
> side: $\quad \mathrm{AB}$
> Appar. S
> Appar. dL
> \% error 0.02051
> side: $\quad \mathrm{Ab}$
> Appar. S 0.99971
> $\begin{array}{ll}\text { Appar. dL } & -0.03095 \\ -0.02867\end{array}$

side:	AB	BC
Appar. S	1.00021	1.00026
Appar. dL	0.02216	0.02216
\% error	0.02051	0.02636

End of Error Analysis
$b c$
0.99963
-0.03095
-0.03676
$\begin{array}{lcc}\text { stakes: } & \text { AB } & \text { CD } \\ \text { stretch: } & 0.998562448 & 0.999579428 \\ \text { \% strain } & -0.143755 & -0.042057\end{array}$
$\begin{array}{cc}\text { AC } & B D \\ 1.000435242 & 0.999696536 \\ 0.043524 & -0.030346\end{array}$
1976 Data

1st Series 1976

Z
1062.856
1067.237

xp

 1976 ificant."

[^5]

Estimates of Errors in Lengths and Stretches:
"Apparent stretch and length change values, due solely to error, would be:"

side:	AB	BC	CD	AD
Appar. S	0.9998	0.9997	0.9998	0.9997
Appar. dL	-0.0211	-0.0211	-0.0211	-0.0211
\% error	-0.0195	-0.0251	-0.0187	-0.0255
		2nd Series 1976		
	Point	X	y	Z
from	A	736080.811	121960.444	1062.827
to	B	736151.334	121878.551	1067.291
from	C	736094.321	121816.736	1072.967
to	D	736021.227	121902.863	1067.646
from	A	736080.810	121960.407	1062.880
to	C	736094.304	121816.761	1072.904
from	B	736151.313	121878.589	1067.297
to	D	736021.222	121902.859	1067.659
from	C	736094.344	121816.748	1072.929
to	B	736151.312	121878.594	1067.279
from	A	736080.801	121960.402	1062.817
to	D	736021.299	121902.838	1067.661

Estimates of Errors in Lengths and Stretches:
"Apparent stretch and length change values, d
"Apparent stretch and length change values, due solely to error, would be:"

BC

3rd series 1976

Estimates of Errors in Lengths and Stretches:
"Apparent stretch and length change values, due solely to error, would be:"

Estimates of Errors in Lengths and Stretches:

0.01290

3rd	average
0.086	0.0603333
-0.11	-0.06
0.011	0.0266667
-0.099	-0.086
0.039	0.0386667
-0.095	-0.080333

$\begin{aligned} & \text { 응 } \\ & \stackrel{\rightharpoonup}{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { O} \\ & \text { O} \\ & \stackrel{N}{C} \end{aligned}$		M ले ले ले ले	
幺 므N	$\begin{aligned} & \text { O} \\ & \underset{\mathrm{O}}{\mathrm{~N}} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	8 8 7 7	$\begin{aligned} & \mathscr{\circ} \\ & \underset{N}{1} \\ & \underset{N}{N} \end{aligned}$	
$\stackrel{N}{O} \underset{寸}{V}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \infty \\ & \text { © } \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \underset{O}{0} \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 0 \\ & \text { مُ } \end{aligned}$

[^6]

\footnotetext{
cd Ad Ac

"Apparent stretch and length change values, due solely to error, would be:"

1976 2nd series

1.0002
0.0226

$$
\begin{aligned}
&
\end{aligned}
$$

1976 2nd series
Stretches of Line Segments in Quadrilateral
Stretch Values Computed from Slope－Distance Measurements of Qadrilateral
1976 3rd series
Stretches of Line Segments in Quadrilateral
Stretch Values Computed from Slope－Distance Measurements of Qadrilateral

$$
\begin{aligned}
& \text { stakes: } \\
& \text { Stretch: } \\
& \text { \% strain }
\end{aligned}
$$

0.0325
－0．0262
$A D$
1.0008
0.0810
AD
1.0005
0.0518
毋 O O OO O O

δ height			
1st	2nd		Ord
average			
0.134	0.051	0.131	0.1053333
-0.033	0.029	-0.077	-0.027
0.005	0.064	0.011	0.0266667
-0.092	-0.099	-0.115	-0.102
0.043	0.086	0.065	0.0646667
0.003	-0.095	-0.068	-0.053333

N
N
O
1

∞
8
8
:---
8
8

芴
－

Estimates of Errors in Lengths and Stretches：

＂Apparent stretch and length change values，due solely to error，would be：＂ | $c d$ | Ad |
| :--- | :---: |
| 00001 | 1.00001 |
| 00057 | 0.00057 | $\begin{array}{ll}0.00057 & 0.00057 \\ 0.00050 & 0.00069\end{array}$

Stretches of Line Segments in Quadrilateral
Stretches of Line Segments in Quadrilateral

stakes:	AB	CD	AC	BD	BC
Stretch:	0.9984	0.9997	0.9995	0.9994	1.0008
\% strain	-0.1626	-0.0343	-0.0529	-0.0557	0.0845
1976 2nd series					
Stretches of Line Segments in Quadrilateral					
Stretch Values Computed from Slope-Distance Measurements of Qadrilatera					
stakes:	AB	CD	AC	BD	BC
Stretch:	0.9983	0.9999	0.9997	0.9997	1.0007
\% strain	0.1719	-0.0110	-0.0265	-0.0350	0.0669
1976 3rd series					
Stretches of Line Segments in Quadrilateral					
Stretch Values Computed from Slope-Distance Measurements of Qadrilatera					
stakes:	AB	CD	AC	BD	BC
Stretch:	0.9985	0.9998	0.9996	0.9999	1.0008
\% strain-0	4-0.0184	-0.0377	-0.0084	0.0757	0.0243

Table III. 1
Program to check length measurements in a quadrilateral and to compute magnitudes of errors. "Quad 1, just NE of quad 0 [In boulder field within shear zone (near base camp)]."
"Points A and B are new stations, points C and D correspond to points B and A, respectively, in Quad 0 ." "Note that horizontal and vertical, not slope distances are to be measured."
AD
0.2794
0.27127
0.27536
0.2735
0.26318
0.26727
0.27515
0.26797
0.27106

0.271
$2.71 \mathrm{E}-03$

$1.76453 \mathrm{E}-09$

\circ

$1.74378 \mathrm{E}-06$
1.70566 E

O

AD
0.41
0.43
0.37

Changes in Height (in meters) "(e.g., $A B$ is change in B relative to A)"					
AB	CD	AC	BD	BC	AD
0.00	-0.06	0.56	0.35	-0.45	0.41
0.04	-0.08	0.47	0.33	-0.49	0.43
0.01	-0.11	0.48	0.32	-0.47	0.37

Start of Error Computations:
The lengths of the sides of the plane quadrilaterals:

before:	AB	BC	CD	AD	AC	BD
	74.338	95.802	108.017	85.694	137.771	116.550
	Ab	bc	cd	Ad	Ac	bd
After:	74.183	96.095	107.914	85.875	137.626	116.797
Compute angles of plane quadrilaterals (in radians).						
angle no:	1	2	3	4	5	6
angle:	CAB	ACB	CBD	CDB	ACD	DAC
before	0.72547531	0.540845146	1.050884629	0.878431116	0.671431763	0.901304761
angle:	cAb	Acb	cbd	cdb	Acd	dAc
after	0.730009054	0.540750164	1.046849557	0.880402345	0.673590587	0.900986068
"Now adjust lengths through increments, inc1 (before) and inc2 (after)"						
Error Checking (angles in degrees).						
angle no:	1	2	3	4	5	6
Total Error (degrees)						
before	41.57	30.99	60.21	50.33	38.47	51.64
	ERROR	8.49229E-09	degrees			
after	41.83	30.98	59.98	50.44	38.59	51.62
	ERROR	-8.33893E-11	degrees			

[^7]
©O O O O
Errors in Triangles (angles in degrees)
inc1=0.01479388 Adjust until error is (nearly) 0 degr.
inc2=-0.02361917 Adjust until error is (nearly) 0 degr.
BD
116.565
bd
116.774
AC
137.771
Ac
137.626

OOO O
등웅응
AB
74.353
Ab
74.160
운우ㅇㅜㅜㅇ

Estimates of Errors in Lengths and Stretches:
"Apparent stretch and length change values, due solely to error, would be:"
$\begin{array}{lcccc}\text { side: AB } & \text { BC } & \text { CD } & \text { AD } & \text { AC } \\ \text { Appear. S } & 0.99980 & 0.99985 & 0.99986 & 0.99983 \\ \text { Appear. AL } & -0.01479 & -0.01479 & -0.01479 & -0.01479 \\ \text { \% error } & -0.01990 & -0.01544 & -0.01369 & -0.01726 \\ & & & & \\ \text { side: } & \mathrm{Ab} & \mathrm{bc} & \mathrm{cd} & \mathrm{Ad} \\ \text { Appear. S } & 1.00032 & 1.00025 & 1.00022 & 1.00028 \\ \text { Appear. dL } & 0.02362 & 0.02362 & 0.02362 & 0.02362 \\ \text { \% error } & 0.03185 & 0.02459 & 0.02189 & 0.02751\end{array}$

Estimates of Errors in Lengths and Stretches:
"Apparent stretch and length change values, due solely to error, would be:"
$\begin{array}{lcccc}\text { side: AB } & \text { BC } & \text { CD } & \text { AD } & \text { AC } \\ \text { Appear. S } & 0.99980 & 0.99985 & 0.99986 & 0.99983 \\ \text { Appear. AL } & -0.01479 & -0.01479 & -0.01479 & -0.01479 \\ \text { \% error } & -0.01990 & -0.01544 & -0.01369 & -0.01726 \\ & & & & \\ \text { side: } & \mathrm{Ab} & \mathrm{bc} & \mathrm{cd} & \mathrm{Ad} \\ \text { Appear. S } & 1.00032 & 1.00025 & 1.00022 & 1.00028 \\ \text { Appear. dL } & 0.02362 & 0.02362 & 0.02362 & 0.02362 \\ \text { \% error } & 0.03185 & 0.02459 & 0.02189 & 0.02751\end{array}$

These values need to be compared to two sets of error values given immediately above "in order to determine which stretch values, if any, are significantly greater than the errors."
"In this case, note that the stretch values are insignificant."
End of Spreadsheet

BD
1.00000
0.00000
0.00000
Ac
1.00000
0.00000
0.00000
BC
1.003454286
0.345429
End of Error Analysis
Stretch Values Computed from Slope-Distance Measurements of Qadrilateral
Stretches of Line Segments in Quadrilateral
Stretch Values Computed from Slope-Distance

stakes:	AB	CD	AC	BD
Stretch:	0.997918489	0.999095659	0.999207391	1.002269114
\% strain	-0.208151	-0.090434	-0.079261	0.226911

\% strain

1976 Data

Mst Series 1976

$$
\begin{array}{cc}
\\
& \\
0.99987 & \text { App. Stretch } \\
-0.01479 & \text { "(e.g., metres)" } \\
-0.01269 & \text { percent } \\
& \\
\text { bd } & \\
1.00020 & \text { App. Stretch } \\
0.02362 & \text { "(egg., metres)" } \\
0.02023 & \text { percent }
\end{array}
$$

Estimates of Errors in Lengths and Stretches:
"Apparent stretch and length change values, due solely to error, would be:"

$d r$
74.341
$\stackrel{ }{\stackrel{\circ}{\infty}}$

 ©
$\stackrel{5}{6}$
$\stackrel{\text { © }}{0}$
$\stackrel{0}{=}$
$=7$
zp
$2 \nabla \angle O^{-}$
N

$\stackrel{\circ}{\circ}$
$\stackrel{\widetilde{m}}{\stackrel{m}{6}}$
-10.426
5.360 -53.564
81.840
-137.634
-2.305
84.048
-55.832
-55.832
c
dx
51.570
-70.482
5.566
-116.476
46.009
-64.952

2nd Series 1976

ıp	zp	侣

Appar. S
Appar. dL $\begin{array}{lll}\text { \% error } & 0.023 & 0.018\end{array}$

3rd series 1976
¢ 8
$\stackrel{8}{4}$
\%

을 9.

Estimates of Errors in Lengths and Stretches:

AC
1
0
0.000
"Apparent stretch and length change values, due solely to error, would be:"
1992 Data
$\begin{array}{lllll}\text { from } & \mathrm{C} & \mathbf{7 3 6 1 5 1 . 3 5 5} & 121878.607 & 1067.247 \\ \text { to } & \mathrm{B} & 736197.291 & 121962.678 & 1056.796\end{array}$ 1056.796
1057.483 1057.483
1062.903

Estimates of Errors in Lengths and Stretches:
"Apparent stretch and length change values, due solely to error, would be:"

		BC
side:	AB	0.98985603
Appear. S	0.999801031	0.9984563
Appar. dL	-0.01479388	-0.0149388
\% error	-0.020	-0.015

1
0
0.000 84.071
-55.852

$$
\begin{gathered}
C D \\
0.99986306 \\
-0.01479388 \\
-0.014
\end{gathered}
$$

BD
B99873085 App. Stretch
 121878.607
121962.678
122016.274
121960.422 736145.773 736080.781

121960.422

$\stackrel{E}{\circ}$

stakes:	AB	CD		A	C	BD		BC	AD					
Stretch:	0.9983	0.9990		0.99	995	1.0025		1.0033	1.0028					
\% strain	-0.1700	-0.1037		-0.05		0.2464		0.3327	0.2794					
δ height	-0.7050													
1976 2nd series														
Stretch Values Computed from Slope-Distance Measurements of Qadrilateral														
stakes:	AB	CD			AC	BD		BC	AD					
Stretch:	0.9983	0.9991		0.99	995	1.0024		1.0033	1.0027					
\% strain	-0.1701	-0.0918		-0.05		0.2406		0.3257	0.2713					
1976 3rd series														
Stretch Values Computed from Slope-Distance Measurements of Qadrilateral														
stakes:	AB	CD		AC		BD		BC	AD					
Stretch:	0.9983	0.9990		0.99	995	1.0023		1.0034	1.0028					
\% strain	-0.1702	-0.1000		-0.05		0.2349		0.3383	0.2754					
2nd series 1992														
						line len	engths							
Point	x	y	z		dx	dy	dz	dr			δ he			
from a	736145.653	122016.832	1057.175								1st	2nd	3rd	average
to b	736197.253	121963.487	1056.477	AB	51.600	-53.345	-0.698	74.221		AB	0.004	0.049	0.016	0.023
from \mathbf{c}	736151.037	121879.278	1067.426											
to d	736080.487	121960.942	1062.944	CD	-70.550	81.664	-4.482	108.011		CD	-0.112	-0.133	-0.154	-0.133
from a	736145.660	122016.811	1057.153											
to c	736151.005	121879.279	1067.404	AC	5.345	-137.532	10.251	138.017		AC	0.567	0.475	0.492	0.511
from b	736197.249	121963.496	1056.489											
to d	736080.490	121960.962	1062.930	BD	-116.759	-2.534	6.441	116.964		BD	0.332	0.309	0.307	0.316
from c	736151.012	121879.290	1067.427											
to b	736197.246	121963.501	1056.492	CB	46.234	84.211	-10.935	96.688		CB	-0.464	-0.509	-0.484	-0.486
from a	736145.659	122016.833	1057.173											
to d	736080.493	121960.942	1062.927	AD	-65.166	-55.891	5.754	86.044		AD	0.380	0.394	0.334	0.369
Estimates of Errors in Lengths and Stretches:														
"Apparent stretch and length change values, due solely to error, would be:"														
side:	Ab		bc		cd	Ad		Ac	bd					
Appar. S	1.000180	1.0001	139807	1.00	0012444	1.000156	447	1	1.000114	Stre				
Appar. dL	0.013427	6760.0134	427676	0.0	13427676	0.0134276	676	0	0.013427	, m				
\% error	0.018	0.014		0.0		0.016		0.000	0.011 pe					

Stretches of Line Segments in Quadrilateral
1976 1st series
Stretches of Line Segments in Quadrilateral
Stretch Values Computed from Slope-Distance Measurements of Qadrilateral

stakes:	AB	CD	AC	BD	BC	AD
Stretch:	0.9984	0.9991	0.9995	1.0023	1.0032	1.0027
\% strain	-0.1619	-0.0890	-0.0547	0.2276	0.3243	0.2714

[^8]※ 우 우 우
足
Estimates of Errors in Lengths and Stretches:
∞
0
 "Quad 2, just SW of quad 0 [In boulder field within shear zone (near base camp)]."
"Points C and D are new stations, points A and B correspond to points D and C, resp
"Points C and D are new stations, points A and B correspond to points D and C, respectively, in Quad 0."
Quad crosses thrust fault on west side of 2-T Ridge.
"Note that horizontal and vertical, not slope distances are to be measured."

Summary of Data (\% strain)

 O $-$ $\stackrel{\circ}{4}$
 0.003《

Program to check length measurements in a quadrilateral and to compute magnitudes of errors.

Note that horizontal and vertical, not slope distances are to be measured.

0.005

BD
-0.51
-0.44
-0.52
-0.52
-0.45
BC
0.47
0.46
0.47
0.48
0.46

	0.03		-0.15	-0.44	-0.53		0.47	-0.47	
	0.04		-0.05	-0.44	-0.52		0.48	-0.56	
	0.03		0.00	-0.49	-0.45		0.47	-0.48	
0.02			-0.12	-0.44	-0.54		0.47	-0.48	
average:	$\begin{aligned} & 0.03 \\ & 2.97 \mathrm{E}-04 \end{aligned}$		-0.06	-0.45	$\begin{aligned} & -0.50 \\ & -4.98 \mathrm{E}-03 \end{aligned}$		$\begin{aligned} & 0.47 \\ & 4.70 \mathrm{E}-03 \end{aligned}$		in percent in strain
			-6.33E-04	-4.53E-03				$\begin{aligned} & -0.50 \\ & -5.03 \mathrm{E}-03 \end{aligned}$	
	2.42		5.057E-05	$8.5 \mathrm{E}-05$	$1.186 \mathrm{E}-05$		$3.0864 \mathrm{E}-07$	0.000304309	
	1.26	-05	0.0005975	$5.54 \mathrm{E}-05$	0.0003443		1.4272E-05	$4.29753 \mathrm{E}-05$	
	4.29	-05	0.0002217	7.32E-05	7.705E-05		$6.0494 \mathrm{E}-07$	$6.22346 \mathrm{E}-05$	
	3.73	-05	3.468E-05	1.26E-05	3.338E-05		$4.9383 \mathrm{E}-06$	0.000189827	
	1.69		0.000131	0.000172	0.0002632		$4.4568 \mathrm{E}-06$	0.000104494	
	1.23	-06	0.0007778	$8.35 \mathrm{E}-06$	0.0001235		$7.9012 \mathrm{E}-07$	0.000133531	
	5.97	-06	1.186E-05	$2.08 \mathrm{E}-05$	5.542E-05		$8.3457 \mathrm{E}-06$	0.000328012	
		-07	0.0004317	0.000147	0.0002119		$2.0864 \mathrm{E}-06$	$3.4679 \mathrm{E}-05$	
	6.53	-06	0.0003443	1.51E-05	0.0001633		$2.4198 \mathrm{E}-06$	$5.21605 \mathrm{E}-05$	
Stndrd Dev.	0.01		0.05	0.02	0.04		0.01	0.04 in percent	
	$1.12 \mathrm{E}-0$		5.10E-04	$2.43 \mathrm{E}-04$	3.58E-04		$6.18 \mathrm{E}-05$	$3.54 \mathrm{E}-04$ in strain	
Coef. Var.	37.87\%		80.53\%	5.36\%	7.20\%		1.31\%	7.04\%	
	AB		CD	AC	BD		BC	AD	
line leng	ths (in	meters) 19	1976				line lengths 1	1992	
	1 st	2nd	3rd	average		1st	2 nd	3rd	average
	. 120	113.112	113.116	113.116	AB	113.107	$7 \quad 113.106$	113.106	- 113.10
	7.359	107.348	107.353	107.353	CD	107.410	-107.406	107.411	1107.40
	3.434	163.417	163.399	163.417	AC	163.146	- 163.155	163.137	163.14
	. 707	140.702	140.696	140.702	BD	140.770	140.776	140.764	4140.77
	. 677	98.673	98.668	98.673	CB	98.420	- 98.411	98.429	988.42
	. 554	112.551	112.549	112.551	AD	112.372	- 112.368	112.376	$6 \quad 112.37$

Note: Values in bold have been adjusted.
Note: You are to enter values for bold-face quantities. The others are computed.

64

from	A	736021.168	121902.858	1067.670					
to	c	736032.337	121740.086	1076.608	AC	11.169	-162.772	8.938	163.399
from	B	736094.320	121816.775	1072.902					
to	D	735953.683	121812.873	1071.678	BD	-140.637	-3.902	-1.224	140.696
from	c	736032.364	121740.060	1076.608					
to	B	736094.320	121816.763	1072.930	Св	61.956	76.703	-3.678	98.668
from	A	736021.196	121902.872	1067.690					
to	D	735953.720	121812.881	1071.67	AD	-67.476	-89.991	3.987	112.549
	${ }^{\text {AB }}$	BC	CD	AD	AC	BD			
	112.968	98.600	107.190	112.478	163.155	140.691		muth	
Differe	ences in a	litude:					N	139.6	E
	$A>B$	B>C	$\bigcirc{ }^{\text {c }}$	A>D	$A>C$	B>D	N	38.9	E
	5.258	3.678	-4.862	3.987	8.938	-1.224			
		3rd	ries 1992						
						line	ngths		
	Point	${ }^{\mathrm{x}}$	${ }^{\text {y }}$	z		dx	dy	dz	dr
from	a	736020.882	121903.378	1067.704					
to	b	736094.109	121817.337	1072.984	AB	73.227	-86.041	5.280	113.107
from	c	736032.258	121740.835	1076.206					
to	d	735953.392	121813.585	1071.225	CD	-78.866	72.750	-4.981	107.411
from	a	736020.884	121903.366	1067.692					
to	c	736032.259	121740.848	1076.189	AC	11.375	-162.518	8.497	163.137
from	b	736094.103	121817.308	1072.972					
to	d	735953.398	121813.615	1071.212	BD	-140.705	-3.693	-1.760	140.764
from	c	${ }^{736032.237}$	121740.830	1076.191					
to	b	736094.095	121817.326	1072.988	CB	61.858	76.496	-3.203	98.429
from	a	736020.902	121903.387	1067.732					
to	d	735953.404	121813.609	1071.238	AD	-67.498	-89.778	3.506	112.376
		bc		Ad	Ac	bc			
	112.983	98.377	107.296	112.320	162.916	140.753		muth	
	$A>b$	b>c	$c>d$	A>d	$A>C$	b>d	N	139.6	E
	-5.280	3.203	-4.981	3.506	8.497	-1.760	N	39.0	E
The stakes of the quadriaterals are arranged as follows:									
Before:			A	B	After:	A	b		
			D	c		d			

Start of Error Computations:
The lengths of the sides of the plane quadrilaterals:

	AB	BC	CD	AD	AC	BD		
before:	112.968	98.600	107.190	112.478	163.155	140.		
	Ab	bc	cd	Ad	Ac	bd		
After:	112.983	98.377	107.296	112.320	162.916	140.		
Compute angles of plane quadrilaterals (in radians).								
angle no:	1	2	3	4	5	6	7	8
angle:	CAB	ACB	CBD	CDB	ACD	DAC	ADB	ABD
before	0.635729395	0.748165694	0.863549811	0.7743233890	. 7555537	71213	A9958	894147754
angle:	cAb	Acb	cbd	cdb	Acd	dAc	Adb	Abd
after	0.635217062	0.749759747	0.864303122	0.77177320.	75575658	71438	A9967	892312722

"Now adjust lengths through increments, inc1 (before) and inc2 (after)"

$$
\begin{array}{cccccc}
3 & 4 & 5 & 6 & 7 & 8 \\
49.48 & 44.37 & 43.29 & 40.80 & 51.54 & 51.23 \\
& & & & & \\
49.52 & 44.22 & 43.30 & 40.93 & 51.55 & 51.13
\end{array}
$$

inc1 $=\quad-0.0071558$ Adjust until error is (nearly) 0 degr.
inc2 $=-0.01776815$ Adjust until error is (nearly) 0 degr.
 $\stackrel{11}{\text { ㅇ }}$

Error Checking (angles in degrees).
angle no:
$\begin{array}{lc}\text { angle no: } & 1 \\ \text { Total Error (degrees) } & 2\end{array}$
before $\quad 36.42$
$\begin{array}{lcc}\text { ERROR } & 0 & \text { degrees } \\ \text { after } & 36.40 & 42.96\end{array}$
ERROR -0 degrees
"Note: in following, AC and Ac are held fixed." "correction for ""before"" data:"
"correction for "olafter""data:"

Estimates of Errors in Lengths and Stretches:
"Apparent stretch and length change values, due solely to error, would be:"
8

side: AB	BC	CD	AD	AC	BD		
Appar. S	1.00006	1.00007	1.00007	1.00006	1.00000	1.00005	$\begin{aligned} & \text { App. Stretch } \\ & \text { "(e.g., metres)" } \\ & \text { percent } \end{aligned}$
Appar. dL	0.00716	0.00716	0.00716	0.00716	0.00000	0.00716	
\% error	0.00633	0.00726	0.00668	0.00636	0.00000	0.00509	
side: Ab	bc	cd	Ad	Ac	bd		
Appar. S	1.00016	1.00018	1.00017	1.00016	1.00000	1.00013	App. Stretch
Appar. dL	0.01777	0.01777	0.01777	0.01777	0.00000	0.01777	"(e.g., metres)"
\% error	0.01573	0.01806	0.01656	0.01582	0.00000	0.01263	percent
End of Error Analysis							
Stretches of Line Segments in Quadrilateral							
Stretch Values Computed from Slope-Distance Measurements of Qadrilateral							
stakes:	AB	CD	AC	BD	BC	AD	
Stretch:	1.00014655	1.001040026	0.998394395	1.00048341	0.997577	30.998462	
\% strain	0.014655	0.104003	-0.160561	0.048341	-0.242268	-0.153764	
These values need to be compared to two sets of error values given immediately above							
"in order to determine which stretch values, if any, are significantly greater than the errors."							
"In this case, note that the stretch values are insignificant."							
End of Spreadsheet							

1976 Data

28-Dec-94

$\stackrel{\varrho}{\circ}$	우ㄹㅜㅜㄷ	$\begin{aligned} & n \\ & \stackrel{N}{0} \\ & \stackrel{0}{0} \end{aligned}$		$$	$$	
	$\stackrel{\text { N}}{N}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\mathbf{N}} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \underset{+}{+} \\ & \underset{\sim}{\mathbf{D}} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\text { N}}{\mathbf{O}} \end{aligned}$	$\begin{aligned} & \stackrel{\varrho}{0} \\ & 0 \\ & \infty \\ & \hline \end{aligned}$	N0

[^9]End of Error Analysis
Stretches of Line Segments in Quadrilateral
Stretch Values Computed from Slope-Distance
stakes:
Stretch:
\% strain
1st Series 1976

Estimates of Errors in Lengths and Stretches:
＂Apparent stretch and length change values，due solely to error，would be：＂

BD
1．000136798App．Stretch
0．019245077＂（e．g．，metres）＂
0．013679826percent
BD
1．000136798App．Stretch
0．019245077＂（e．g．，metres）＂
0．013679826percent
＂Apparent stretch and length change values，due solely to error，would be＂
line lengths

line lengths			
$d x$	$d y$	$d z$	
73.117	-86.143	5.249	113.112
-78.684	72.853	-4.980	107.348
11.210	-162.736	8.986	163.417
-140.651	-3.921	-1.306	140.702
61.994	76.708	-3.669	98.673
-67.515	-89.950	3.991	112.551

112.551
3.991
$\begin{array}{rc}\text { AC } & \text { BD } \\ 1 & 1.000360661 \text { App．Stretch }\end{array}$
1.000360661 App．Stretch
0.050728783 ＂（e．g．，metres）＂ 0.036066129 percent

닝	$\begin{aligned} & \stackrel{\varrho}{\tau} \\ & \stackrel{\Gamma}{\Gamma} \end{aligned}$	$\begin{gathered} \text { N్ } \\ \stackrel{N}{\mathrm{~N}} \\ \stackrel{0}{0} \end{gathered}$	
$\begin{aligned} & \stackrel{n}{5} \\ & \frac{N}{\sigma} \\ & \text { © } \end{aligned}$	$\begin{gathered} \infty \\ \stackrel{\infty}{N} \\ \stackrel{N}{n} \end{gathered}$	$\begin{aligned} & \mathbb{O} \\ & \mathbb{O} \\ & \underset{Y}{\prime} \end{aligned}$	\cdots
$\stackrel{\text { ® }}{\underline{D}}$	$\begin{aligned} & \stackrel{1}{\circ} \\ & \stackrel{0}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\sim}{R} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & \underset{\sim}{N} \\ & \end{aligned}$
중	$\frac{\mathscr{O}}{\mathfrak{N}}$	$\begin{aligned} & \text { N } \\ & \underset{\infty}{\infty} \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{8}{8}$

Estimates of Errors in Lengths and Stretches：
＂Apparent stretch and length change values，du

BC solely to error，would be：＂	
	CD
14612	1.000473298
728783	0.050728783
461221	0.047329834
3rd series 1976	

1.00045125
0.05072878

중

※ O O
ค

68

δ height			
1st	2nd	3rd	average
0.048	0.042	0.033	0.041
-0.081	-0.029	-0.147	-0.086
-0.442	-0.492	-0.444	-0.459
-0.515	-0.449	-0.531	-0.498
0.477	0.464	0.473	0.471
-0.544	-0.472	-0.468	-0.495

뼝 8 8 8 q

Stretch Values Computed from Slope-Distance Measurements of Qadrilateral										
stakes:	AB		CD		AC		BD	BC		AD
Stretch:	0.9999		1.0005		0.9982		1.0005	0.9974		0.9984
\% strain	-0.0114		0.0478		-0.1764		0.0451	-0.2601		-0.1615
δ height	5.2680									
1976 2nd series										
Stretch Values Computed from Slope-Distance Measurements of Qadrilateral										
stakes:	AB		CD		AC		BD	BC		AD
Stretch:	1.0000		1.0006		0.9983		1.0005	0.9974		0.9984
\% strain	-0.0044		0.0584		-0.1657		0.0489	-0.2558		-0.1595
1976 3rd series										
Stretch Values Computed from Slope-Distance Measurements of Qadrilateral										
stakes:	AB		CD		AC		BD	BC		AD
Stretch:	0.9999		1.0005		0.9984		1.0005	0.9975		0.9984
\% strain	-0.0079		0.0531		-0.1550		0.0526	-0.2515		-0.1575
2nd series 1992										
line lengths										
Point	x		y	z		dx	dy	dz	dr	
from a	736020.885	1219	3.383	1067.705						
to b	736094.101	1218	7.334	1072.996	AB	73.216	-86.049	5.291	113.106	
from c	736032.273	1217	0.856	1076.208						
to d	735953.391	1218	3.578	1071.199	$C D$	-78.882	72.722	-5.009	107.406	
from a	736020.869	1219	3.388	1067.713						
to c	736032.276	1217	0.854	1076.207	AC	11.407	-162.534	8.494	163.155	
from b	736094.096	1218	7.325	1072.977						
to d	735953.380	1218	3.595	1071.222		-140.716	-3.730	-1.755	140.776	
from c	736032.257	1217	0.850	1076.192						
to b	736094.112	1218	7.325	1072.987	CB	61.855	76.475	-3.205	98.411	
from a	736020.874	1219	3.386	1067.703						
to d	735953.420	1218	3.586	1071.222	AD	-67.454	-89.800	3.519	112.368	
Estimates of Errors in Lengths and Stretches:										
"Apparent stretch and length change values, due solely to error, would be:"										
side:	Ab		bc		cd		Ad	Ac b	bd	
Appar. S	0.9999	8909	0.9999	990684	0.9999	914606	0.999918442	1	0.9999	34913 App
Appar. dL	-0.009162	2578	-0.0091	162578	-0.009	162578	-0.009162578	0	-0.0091	62578 "(
\% error	-0.0081090	09085	-0.0093	315976	-0.0085	539387	-0.008155823	0	-0.0065	08687 pe

Stretches of Line Segments in Quadrilateral
1976 1st series
Stretches of Line Segments in Quadrilateral
Stretch Values Computed from Slope-Distance Measurements of Qadrilateral

-

<
毋 8 8 8 8 8 8
Estimates of Errors in Lengths and Stretches:
"Apparent stretch and length change values, due solely to error, would be:"

1976 1st series
Stretches of Line Segments in Quadrilateral
Stretch Values Computed from Slope-Distance Measurements of Qadrilateral
$\begin{array}{lccccc}\text { stakes: } & \text { AB } & \text { CD } & \text { AC } & \text { BD } & \text { BC } \\ \text { Stretch: } & 0.9999 & 1.0005 & 0.9982 & 1.0004 & 0.9975 \\ \text { \% strain } & -0.0117 & 0.0487 & -0.1819 & 0.0409 & -0.2509\end{array}$
1976 2nd series
Stretches of Line Segments in Quadrilateral
Stretch Values Computed from Slope-Distance Measurements of Qadrilateral
$\begin{array}{lccccc}\text { stakes: } & \text { AB } & \text { CD } & \text { AC } & \text { BD } & \text { BC } \\ \text { Stretch: } & 1.0000 & 1.0006 & 0.9983 & 1.0004 & 0.9975 \\ \text { \% strain } & -0.0047 & 0.0594 & -0.1712 & 0.0446 & -0.2466\end{array}$

1976 3rd series
Stretches of Line Segments in Quadrilateral
Stretch Values Computed from Slope-Distance Measurements of Qadrilateral
$\begin{array}{ccc}\text { AC } & \text { BD } & \text { BC } \\ 0.9984 & 1.0005 & 0.9976 \\ -0.1606 & 0.0483 & -0.2423\end{array}$
$0 \stackrel{6}{8} 8$

stakes:
Stretch:
\% strain
Program to check length measurements in a quadrilateral and to compute magnitudes of errors．

$$
\ll
$$

$$
000000000
$$

Table III． 3

 ＂New Quad 3，just NE of quad 1 ，extending across main fault．＂＂Points A and B are new stations，points C and D correspond to points B and A，respectively，in Quad 1．＂
Quad crosses main rupturet on east side of 2－T Ridge．
＂Note that horizontal and vertical，not slope distances are to be measured．＂
＂Points A and B are new stations，points C and D correspond to points B and A，respectively，in Quad 1．＂
Quad crosses main rupturet on east side of 2－T Ridge．
＂Note that horizontal and vertical，not slope distances are to be measured．＂

Summary of Data (\% strain)

1.778

Stndrd Dev．$$
\begin{aligned}
& A D \\
& 1.023
\end{aligned}
$$

$$
1.023
$$ ค

1.023

$2.1913 E-32$

$0.000 \quad 0.000$
AD
AD 송송ㅅㅅㅅㅅㅇㅇㅇ 송송ㅅㅅㅅㅅㅇㅇㅇ
Changes in Height（in meters）
Changes in Height（in meters）
.000
.000

$$
\begin{aligned}
& \infty \\
& \text { CO } \\
& \text { © }
\end{aligned}
$$

0.70
0.70
0.70
©
NN N N N

NO N
No

$$
\text { 1st series } 1976
$$

0.0080

0 000000000 웅
$\stackrel{\circ}{\circ}$

。
000000000
$\stackrel{8}{0}$ 8 0.00 0.00

$$
\begin{array}{cc}
\text { line lengths } 1992 \\
& \\
\text { 2nd } & \text { 3rd } \\
92.368 & 92.368 \\
74.183 & 74.183 \\
83.073 & 83.073 \\
122.237 & 122.237 \\
69.789 & 69.789 \\
57.580 & 57.580
\end{array}
$$

\[

\]

の人 등

74

Start of Error Computations:
The lengths of the sides of the plane quadrilaterals:

$$
\begin{array}{lccc}
\text { Compute angles of plane quadrilaterals (in radians). } \\
\text { angle no: } & 1 & 3 \\
\text { angle: } & \text { CAB } & \text { ACB } & \text { CBD } \\
\text { before } & 0.788601317 & 1.275957564 & 0.600883275 \\
\text { angle: } & \text { cAb } & \text { Acb } & \text { cbd } \\
\text { after } & 0.80933167 & 1.291120001 & 0.576227352
\end{array}
$$

before:
After: 5
ACD
0.717242522
Acd
0.737914311
AC
84.937
Ac
82.900

Error Checking (angles in degrees).

$$
\begin{array}{lc}
4 & 5 \\
. \text { degrees) } & 41.09 \\
.37 & 42.28 \\
.73 & \\
\\
1= & 0.025190418 \\
2= & -0.03734157
\end{array}
$$

AC
84.937

Ac
82.900

\quad| \quad |
| :--- |
| \quad ACD |
| 0.717242522 |
| Acd |
| 0.737914311 |

$$
\text { - } \stackrel{0}{\circ}
$$

$\begin{array}{ll}\text { AB } & \text { BC } \\ 92.271 & 68.399 \\ \text { Ab } & \mathrm{bc} \\ 92.367 & 69.570\end{array}$
 69.570

CD
74.289
cd
74.180
Error Checking (angles in degrees).
2

$$
\begin{aligned}
& \infty
\end{aligned}
$$

BD
0.99979 App. Stretch
880
48880
4000

AD
0.99956
-0.02519 .04437 Ad
1.00065
0.03734 0.03734
0.06526 0.06526 End of Error Analysis
Stretches of Line Segments in Quadrilateral Stretch Values Computed from Slope-Distance Measurements of Qadrilatera
 $\begin{array}{lllll}\text { side: } & & 0.9 B 1042146 & 0.998524667 & 0.976685746 \\ \text { Stretch: } & 1.00104218681453\end{array}$
\% strain $0.104215 \quad-0.147533$
AC
1.017778882
1.777888 1.777888

These values need to be compared to two sets of error values given immediately above "in order to determine which stretch values, if any, are significantly greater than the errors." "In this case, note that the stretch values are insignificant."

End of Spreadsheet

1976 Data

1st Series 1976

y
122047.498
121985.767
121962.742
122016.257
122047.494
121962.662
121985.746
122016.261
121962.695
121985.869
122047.551
122016.248

Estimates of Errors in Lengths and Stretches:
"Apparent stretch and length change values, due solely to error, would be:"
$\begin{array}{cc}\text { BD } & \\ 1 & 0.999789888 \text { App．Stretch } \\ 0 & -0.025190418 \text {＂（e．g．，metres）＂} \\ 0 & -0.021011194 \text { percent }\end{array}$
$\begin{array}{cc}\text { AD } & \text { AC } \\ 0.999661029 & 0.999556294\end{array}$
$-0.025190418-0.025190418$
880L688と0 0^{-} ，
$\square-0.0$

line lengths		
dy	dz	dr
－61．731	－0．272	92.271
53.515	0.705	74.293
－84．832	4.500	85.056
30.515	5.579	119.995
23.174	－4．833	68.570
－31．303	5.326	56.997

[^10] $\begin{array}{cc}B C & C D \\ 0.99972707 & 0.999631851 \\ -0.025190418 & -0.025190418 \\ -0.027293028 & -0.036814887\end{array}$ side：AB
Appar．S
Appar．dL
\％error

Estimates of Errors in Lengths and Stretches：
＂Apparent stretch and length change values，due solely to error，would be：＂
8

2nd Series 1976

dx

68.580 -51.527 4.223
-115.916
64.354
-47.333 $\begin{array}{cc}z & \\ 1052.228 & \\ 1051.956 & \text { AB } \\ 1056.779 & \\ 1057.484 & \text { CD } \\ 1052.237 & \\ 1056.737 & \text { AC } \\ 1051.942 & \\ 1057.521 & \text { BD } \\ 1056.790 & \\ 1051.957 & \text { CB } \\ 1052.177 & \\ 1057.503 & \text { AD }\end{array}$ $\begin{array}{cc}z & \\ 1052.228 & \\ 1051.956 & \text { AB } \\ 1056.779 & \\ 1057.484 & \text { CD } \\ 1052.237 & \\ 1056.737 & \text { AC } \\ 1051.942 & \\ 1057.521 & \text { BD } \\ 1056.790 & \\ 1051.957 & \text { CB } \\ 1052.177 & \\ 1057.503 & \text { AD }\end{array}$

$A D \quad A C$

0

BC

毋
1976 2nd series
Stretch Values Computed from Slope-Distance Measurements of Qadrilateral stakes:
1976 3rd series
Stretch Values Computed from Slope-Distance Measurements of Qadrilateral $\begin{array}{lcccc}\text { stakes: } & \text { AB } & \text { CD } & \text { AC } & \text { BD } \\ \text { Stretch: } & 1.0010 & 0.9985 & 0.9767 & 1.0187\end{array}$ $\begin{array}{ll}\text { Stretch: } & 1.0010 \\ \text { \% strain } & 0.1042\end{array}$
2nd series 1992
AD
1.0102
1.0228
웅 N

[^11] | line lengths | |
| :--- | ---: |
| dy | $d z$ |
| -61.641 | -0.291 |
| 53.304 | 0.687 |
| -82.861 | 5.362 |
| 32.052 | 6.306 |
| 21.266 | -5.655 |
| -29.553 | 6.022 |

웅 요웅
๓
1976 and series
Stretches of Line Segments in Quadrilateral
Stretch Values Computed from Slope-Distance Measurements of Qadrilateral
stakes:
Stretch:
1976 3rd series
Stretches of Line Segments in Quadrilateral

Stretch Values Computed from Slope-Distance Measurements of Qadrilateral $\begin{array}{lllllll}\text { stakes: } & A B & C D & A C & B D & B C & A D\end{array}$
$\begin{array}{lc}\text { stakes: } & \text { AB } \\ \text { Stretch: } & 1.0010 \\ \text { \% strain } & 0.1042\end{array}$

3rd series 1992

 N
 $\underset{\sim}{N}$ App. Stretch
"(e.g., metres)"
percent
bd
"Apparent stretch and length change values, due solely to error, would be:"
Estimates of Errors in Lengths and Stretches:
side: \quad Ab \quad bc \quad cd \quad Ad Ac
side: \quad Ab \quad bc \quad cd \quad Ad Ac
side: \quad Ab \quad bc \quad cd \quad Ad Ac
side: \quad Ab \quad bc \quad cd \quad Ad Ac

"Apparent stretch and length change values,
Appear. S
Appar. IL
\% error
Stretches of Line Segments in Quadrilateral
1976 dst series
Stretches of Line Segments in Quadrilateral
Stretch Values Computed from Slope-Distance Measurements of Qadrilateral

\&

옹옫윧

\% strain	0.1042	-0.1475	2.3314	1.8681
1976 2nd series				
Stretches of Line Segments in Quadrilateral				
Stretch Values Computed from Slope-Distance Measurements of Qadrilateral				
stakes:	AB	CD	AC	BD
Stretch:	1.0010	0.9985	0.9767	1.0187
\% strain	0.1042	-0.1475	-2.3314	1.8681
1976 3rd series				
Stretches of Line Segments in Quadrilateral				
Stretch Values Computed from Slope-Distance Measurements of Qadrilateral				
stakes:	AB	CD	AC	BD
Stretch:	1.0010	0.9985	0.9767	1.0187
\% strain	0.1042	-0.1475	-2.3314	1.8681

$735953.683 \quad 121812.873$

厄⿵人一口口
©
$\stackrel{\circ}{\circ}$
$\stackrel{\oplus}{\circ}$
$\stackrel{\circ}{\circ}$

121812.881
121902.881

736021.160 $736094.298 \quad 121816.753 \quad 1072.896$
1076.608
$\begin{array}{lll}736094.363 & 121816.767 & 1072.931\end{array}$
$121816.744 \quad 1072.888$

 $736094.298 \quad 121816.753 \quad 1072.896$ 121902.863

736032.364	121740.060	1076.608			
			735953.683	121812.873	1071.678
			121812.881	1071.677	

735953.720

1067.237
1067.264
1067.324

1067.297

730094.320	121816.763		
736151.318	121878.616	1067.237	

736032.36

736032.364	121740.060	1076.608		735953.683	121812.873
	1071.678				
			735953.720	121812.881	1071.677

$736094.298 \quad 121816.753 \quad 1072.896$

736094.325	121816.744	1072.888
736094.363	121816.767	1072.931

$736094.321 \quad 121816.736 \quad 1072.967$
$736094.304 \quad 121816.761 \quad 1072.904$

 73021299
$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{\circ}$

N
©
©
N
 ㅇㅠㅡ
출
．

816てZO1 L9く918して1

736094.363	121816.733	1072.895
736094.394	121816.767	1072.918

736094.320	121816.775
736094.320	121816.763
736151.318	121878.616
736151.317	121878.563
736151.372	121878.559
736151.334	121878.551
736151.312	121878.594

	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\text { ®}}{0} \end{aligned}$	$\frac{\dot{8}}{\stackrel{\text { di}}{\square}}$							$\begin{aligned} & \mathbb{\otimes} \\ & \stackrel{\text { © }}{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\underset{\sim}{0}} \\ & \stackrel{\text { O}}{0} \end{aligned}$		$\begin{gathered} \underset{\sim}{\dot{W}} \\ \stackrel{\text { B}}{0} \end{gathered}$
	$\begin{aligned} & N \\ & \tilde{\omega} \\ & \dot{\sim} \\ & \stackrel{\rightharpoonup}{N} \\ & \stackrel{y}{n} \end{aligned}$						$\begin{aligned} & \frac{Z}{寸} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\text { N}}{N} \end{aligned}$		$\stackrel{\rightharpoonup}{4}$ $\stackrel{\circ}{\circ}$ $\stackrel{\rightharpoonup}{\mathbf{N}}$			¢ ¢ O－ N
	$\begin{aligned} & \text { Q } \\ & \stackrel{+}{\bar{I}} \\ & \stackrel{\text { ond }}{1} \end{aligned}$								\bar{W} © öd			
■ロ O®	＜					E	$\frac{y}{\frac{y}{\bar{\omega}}}<\infty$			＜0	$\begin{aligned} & \frac{.0}{\stackrel{0}{6}<\infty} \\ & \stackrel{\omega}{\infty} \\ & \stackrel{y}{m} \end{aligned}$	＜

		$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{i}} \\ & \stackrel{\text { O}}{\stackrel{1}{N}} \end{aligned}$			$\begin{aligned} & \text { E. } \\ & \infty \\ & \infty \\ & \stackrel{\omega}{\omega} \end{aligned}$	$\begin{aligned} & \text { No } \\ & \stackrel{0}{0} \\ & \stackrel{\omega}{\omega} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{0}{0} \\ & \stackrel{\omega}{N} \end{aligned}$	+

		$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{1}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{e} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \\ & \stackrel{\sim}{c} \end{aligned}$	$\begin{aligned} & \hat{ल} \\ & \stackrel{\rightharpoonup}{\oplus} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\theta}{i} \end{aligned}$			

985.869	1051.957	736197.321	121962.695	1056.790
		1976 Data		
	x	y	z	
A	736193.110	122047.514	1052.214	B
				(3)
D	736145.773	122016.255	1057.503	c
A	736145.757	122016.257	1057.491	B
				(1)
D	736080.812	121960.421	1062.880	c
A	736080.802	121960.421	1062.846	B
				(0)
D	736021.233	121902.860	1067.651	c
A	736021.189	121902.865	1067.665	B
				(2)
D	735953.694	121812.880	1071.677	c
	x	y	z	

ででしく0	ตเ9ย18เてし	868๕¢6¢¢				2262201	$80 \varepsilon<18121$	ع01 ${ }^{\circ} 6098 \leftharpoonup$				${ }_{9}$
			6819201	88800ヶLL	6¢でて098८				269 2901	998 ¢06 IZ	188020982	$\stackrel{\square}{\forall}$
Szて＇1201	989¢18เて！	268๕¢6¢¢	90\％＇9201	9¢8002LZ	89z＇z8098\％							$\begin{aligned} & \text { a } \\ & 0 \end{aligned}$
						886 2201		601＇66098	＋0＜＜201	8LE＇ 806 IZ	28802098	$\begin{aligned} & \text { g } \\ & \forall \\ & \text { sepos pus } \end{aligned}$
ででレOL	989\％18เて！	0てt¢¢6¢¢							80＜＜201	988 ¢06IZ	D2808098	$\underset{\forall}{a}$
			2619201	098002LIZ	L¢Z Z8098」	286 Z201	¢८¢ <18 をし	$21106098 \downarrow$				$\begin{aligned} & \mathrm{g} \\ & 0 \end{aligned}$
てzでしくロ	969\％18ıて	$08 \varepsilon ¢ \subseteq 6 ¢ \varepsilon \downarrow$				L26z201	GZ¢ 218121	960＇66098				$\stackrel{a}{a}$
			L02＇9201	－98002LIE	9＜Zて8098」				81く2901	888 ¢06 L \downarrow	69802098	$\underset{\forall}{o}$
$661 \cdot 201$	$82981812 \downarrow$	168 ¢ $¢ 69 ¢ \sim$	802＇9201	99800ヶLIZ	\＆Lでて8098८							$\begin{aligned} & \text { a } \\ & 0 \end{aligned}$
						966 Z201	ャ¢¢ <18121	101＇660982	sor＜ 2901	ع88：061て1	98802098	$\begin{aligned} & \text { g } \\ & \text { süpes puz } \end{aligned}$
\＆とて＇LOL	989818เて！	ャLE®¢6GEL							9zL－2901	6L8E06 2 亿	ع8802098	$\begin{array}{ll} \square \\ \forall & \text { moin } \\ \text { mol } \end{array}$
			202＇9201	98800ヶLLZ	£もてて¢098L	266 CLOL	218く18เて！	290＇66098				$\begin{array}{ll} a & 01 \\ 0 & \text { mo. } \end{array}$
＋G2＇1201	269\％18ız	20ヶ¢¢6¢¢				2008201	でと 218121	020＇r6098				$\begin{array}{ll} a & 0 \\ a & \text { moll } \end{array}$
			てzて＇9201	L2800てLİ	0ヵて＇z8098」				H2400	698：06にてし	888080982	$\begin{array}{rr} 0 \\ \forall & \text { oun } \\ \text { wour } \end{array}$
0¢でトLOト		$188 ¢ 96981$	002＇9201	て¢80ヤんして।	Oš＇ze098L							$\begin{array}{ll} \text { a } & \left.\begin{array}{ll} 01 \\ 0 & \text { wo. } \end{array}\right] \end{array}$
						966 ZLOL	$018<18121$	980＇66098	82LC4901	6L8¢061で	06802098 2	$\begin{array}{lr} \mathrm{a} & \mathrm{al} \\ \forall & \text { wou } \end{array}$
				0			g		z	\wedge		soues ist

	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~B} \end{aligned}$				736094.095	121817.326	1072.988	736032.237	121740.830	1076.191			
	$\begin{aligned} & \text { A } \\ & \text { D } \end{aligned}$	736020.902	121903.387	1067.732							735953.404	121813.609	1071.238
Quad 0. Near midwidth of 2-T Ridge.													
from to	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	736080.433	121960.946	1062.947	736150.984	121879.283	1067.417						
from to	C							736094.014	121817.347	1073.015	736020.862	121903.362	1067.690
from to	$\begin{aligned} & \text { A } \\ & \text { C } \end{aligned}$	736080.443	121960.960	1062.923				736094.042	121817.265	1073.011			
from	B				736150.955	121879.272	1067.409						
to	D										736020.871	121903.361	1067.688
from	C							736094.035	121817.348	1073.010			
to	B				736150.941	121879.276	1067.420						
from	A	736080.447	121960.959	1062.957									
to	D										736020.869	121903.366	1067.679
2nd series													
	A	736080.450	121960.957	1062.944	736150.954	121879.272	1067.424						
	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$							736094.050	121817.330	1073.019	736020.876	121903.355	1067.674
	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \end{aligned}$	736080.453	121960.959	1062.938				736094.047	121817.324	1073.029			
	B				736150.974	121879.291	1067.439				736020.882	121903.367	1067.685
	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~B} \end{aligned}$				736150.956	121879.278	1067.441	736094.049	121817.333	1073.030			
	A	736080.455	121960.962	1062.940							736020.861	121903.387	1067.672
3rd series													
	$\begin{aligned} & \text { A } \\ & B \end{aligned}$	736080.453	121960.937	1062.930	736150.958	121879.277	1067.445						
	C							736094.079	121817.336	1073.003	736020.888	121903.366	1067.711
	$\begin{aligned} & \text { A } \\ & \text { C } \end{aligned}$	736080.448	121960.936	1062.940				736094.068	121817.345	1073.028			
	C							736094.055	121817.322	1073.010			
	B				736150.966	121879.305	1067.446						

$736020.891 \quad 121903.375 \quad 1067.693$

	A	736080.450	121960.952	1062.944						
		Quad 1. Between midwidth and E side of 2-T Ridge.								
from to	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	736145.646	122016.821	1057.182	736197.260	121963.498	1056.477			
from to	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$							736150.988	121879.276	1067.396
from to	$\begin{aligned} & \text { A } \\ & \text { C } \end{aligned}$	736145.667	122016.826	1057.173				736151.000	121879.292	1067.417
from to	$\begin{aligned} & \mathrm{B} \\ & \mathrm{D} \end{aligned}$				736197.239	121963.504	1056.507			
from to	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~B} \end{aligned}$				736197.260	121963.493	1056.512	736151.001	121879.284	1067.428
from to	$\begin{aligned} & \text { A } \\ & \text { D } \end{aligned}$	736145.645	122016.815	1057.173						
2nd series										
	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	736145.653	122016.832	1057.175	736197.253	121963.487	1056.477			
	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$							736151.037	121879.278	1067.426
	$\begin{aligned} & \text { A } \\ & \text { C } \end{aligned}$	736145.660	122016.811	1057.153				736151.005	121879.279	1067.404
	$\begin{aligned} & \mathrm{B} \\ & \mathrm{D} \end{aligned}$				736197.249	121963.496	1056.489			
	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~B} \end{aligned}$				736197.246	121963.501	1056.492	736151.012	121879.290	1067.427
	$\begin{aligned} & \text { A } \\ & \text { D } \end{aligned}$	736145.659	122016.833	1057.173						
3rd series										
	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	736145.669	122016.809	1057.174	736197.254	121963.497	1056.487			
	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$							736151.001	121879.266	1067.413
	$\begin{aligned} & \text { A } \\ & \text { C } \end{aligned}$	736145.674	122016.804	1057.180				736150.985	121879.281	1067.429
	$\begin{aligned} & \mathrm{B} \\ & \mathrm{D} \end{aligned}$				736197.249	121963.477	1056.494			
	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~B} \end{aligned}$				736197.234	121963.503	1056.503	736150.987	121879.280	1067.423

	$\begin{aligned} & \text { A } \\ & D \end{aligned}$	736145.666	122016.811	1057.177							736080.486	121960.934	1062.957
"Quad 3. On E side of 2_T Ridge, across bounding fault."													
from	$\begin{aligned} & \text { A } \\ & B \end{aligned}$	736194.710	122046.390	1051.159	736263.500	121984.749	1050.868						
to from	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$							736197.250	121963.515	1056.475	736145.662	122016.819	1057.162
from to	${ }_{\text {A }}^{\text {c }}$	736194.705	122046.373	1051.133				736197.245	121963.512	1056.495			
to from	B				736263.466	121984.768	1050.852				736145.675	122016.820	1057.158
from to	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~B} \end{aligned}$				736263.472	121984.779	1050.844	736197.243	121963.513	1056.499			
from to	$\begin{aligned} & \text { A } \\ & D \end{aligned}$	736194.712	122046.387	1051.144							736145.663	122016.834	1057.166
	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$							736197.250	121963.515	1056.475	736145.662	122016.819	1057.162
	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \end{aligned}$	736194.705	122046.373	1051.133				736197.245	121963.512	1056.495			
	$\begin{aligned} & \mathrm{B} \\ & \mathrm{D} \end{aligned}$				736263.466	121984.768	1050.852				736145.675	122016.820	1057.158
	$\begin{aligned} & \text { C } \\ & \text { B } \end{aligned}$				736263.472	121984.779	1050.844	736197.243	121963.513	1056.499			
	$\begin{aligned} & A \\ & D \end{aligned}$	736194.712	122046.387	1051.144							736145.663	122016.834	1057.166
3rd sel	$\begin{gathered} \text { aries } \\ A \\ A \end{gathered}$	736194.710	122046.390	1051.159	736263.500	121984.749	1050.868						
	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$							736197.250	121963.515	1056.475	736145.662	122016.819	1057.162
	$\begin{aligned} & A \\ & C \end{aligned}$	736194.705	122046.373	1051.133				736197.245	121963.512	1056.495			
	$\begin{aligned} & \mathrm{B} \\ & \mathrm{D} \end{aligned}$				736263.466	121984.768	1050.852				736145.675	122016.820	1057.158
	$\begin{gathered} \mathrm{C} \\ \mathrm{~B} \end{gathered}$				736263.472	121984.779	1050.844	736197.243	121963.513	1056.499			

1057.166

W
©
©
N
N
$\underset{z}{\mathrm{scg}} \mathrm{z}$

$\stackrel{\infty}{\square}$

 :

 $\stackrel{\sim}{\stackrel{\sim}{N}}$ N্N

 ゅ ลை

1992 Data

x	y
736194.709	122046.383
736145.667	122016.824
736145.660	122016.818
736080.475	121960.941
736080.448	121960.952
736020.875	121903.366
736020.884	121903.379
735953.394	121813.591
x	

N

 Nㅜㅇ

증

$\begin{array}{cccc} & \mathrm{x} & \mathrm{y} & \mathrm{z} \\ & & \\ \text { B } & 736261.684 & 121985.794 & 1051.952 \\ \text { (3) } & & & \\ \text { C } & 736197.319 & 121962.704 & 1056.772 \\ \text { B } & & & \\ \text { (1) } & & & \\ \text { C } & 736151.326 & 121878.595 & 1067.254 \\ \text { B } & & & \\ \text { (0) } & & & \\ \text { C } & 736094.340 & 121816.761 & 1072.917 \\ \text { B } & & & \\ \text { (2) } & 736032.364 & 121740.070 & 1076.614 \\ \text { C } & \begin{array}{c}\text { y } \\ \text { z }\end{array} & & \end{array}$ 1976 Averaged Results
 مٌ $<0<0<0<0$ x
736263.479
736197.248 736197.248

1992 Averaged Results

[^0]: ${ }^{1}$ The plates are large folded sheets in the envelope at the end of this report.

[^1]: ${ }^{2}$ Names defined by Hudnut and others (1994).
 ${ }^{3}$ We use the term normalized length changes because there may well be fracture discontinuities disrupting the line

[^2]: between the two measurement points. We avoid the closely related term, strain, which is defined only for a continuous body.

[^3]: ${ }^{4}$ Land Engineering Supervisor, Southern California Edison Company, 221 S. Brookhurst Rd., Fullerton, California 92633.[714-870-3127]

[^4]: "Now adjust lengths through increments, inc1 (before) and inc2 (after)"
 Error Checking (angles in degrees).

[^5]: y
 121960.415
 121878.616
 121816.753
 121902.881
 121960.423
 121816.744
 121878.563
 121902.865
 121816.767
 121878.559
 121960.425
 121902.860

[^6]: 82.999

[^7]: "Note: in following, AC and Ac are held fixed." "correction for ""before"" data:"

[^8]: 1976 2nd series
 Stretches of Line Segments in Quadrilateral
 Stretch Values Computed from Slope-Distance Measurements of Qadrilateral

 | | AB | CD | AC | BD | BC |
 | :--- | :---: | :---: | :---: | :---: | :---: |
 | stakes: | 0.9984 | 0.9992 | 0.9995 | 1.0022 | 1.0032 |
 | Stretch: | 0.992 | | | | |
 | \% strain | -0.1620 | -0.0771 | -0.0550 | 0.2219 | 0.3173 |

 Stretch:
 \% strain
 1976 3rd series
 Stretches of Line Segments in Quadrilateral
 Stretch Values Computed from Slope-Distance Measurements of Qadrilateral

 0.21620 .3299

[^9]: side: AB
 ar dl
 Appar. dL
 side: $A b$
 の
 Appar. dL
 \% error

[^10]: App．Stretch

 AD AC

 3rd series 19

 ＋ $736197.296 \quad 121962.742$ $\begin{array}{ll}736145.769 & 122016.257 \\ 736193.117 & 122047.494\end{array}$ $736197.340 \quad 121962.662$ $736261.692 \quad 121985.746$ $\begin{array}{ll}736145.776 & 122016.261 \\ 736197.321 & 121962.695\end{array}$ $736261.675 \quad 121985.869$

 Appar．S
 Appar．d
 \％error

[^11]: Estimates of Errors in Lengths and Stretches: App. Stretch
 "(e.g., metres)"
 percent bd

 Stretches of Line Segments in Quadrilateral
 1976 1st series
 Stretches of Line Segments in Quadrilateral
 Stretch Values Computed from Slope-Distanc $\begin{array}{lcccccc}\text { Stretch Values Computed from Slope-Distance Measurements of Qadrilateral } \\ \text { stakes: } & \text { AB } & \text { CD } & \text { AC } & \text { BD } & \text { BC } & \text { AD } \\ \text { Stretch: } & 1.0010 & 0.9985 & 0.9767 & 1.0187 & 1.0178 & 1.0102 \\ \text { \% strain } & 0.1042 & -0.1475 & -2.3314 & 1.8681 & 1.7779 & 1.0228\end{array}$ ∞

